Abstract:Domain adaptive pose estimation aims to enable deep models trained on source domain (synthesized) datasets produce similar results on the target domain (real-world) datasets. The existing methods have made significant progress by conducting image-level or feature-level alignment. However, only aligning at a single level is not sufficient to fully bridge the domain gap and achieve excellent domain adaptive results. In this paper, we propose a multi-level domain adaptation aproach, which aligns different domains at the image, feature, and pose levels. Specifically, we first utilize image style transer to ensure that images from the source and target domains have a similar distribution. Subsequently, at the feature level, we employ adversarial training to make the features from the source and target domains preserve domain-invariant characeristics as much as possible. Finally, at the pose level, a self-supervised approach is utilized to enable the model to learn diverse knowledge, implicitly addressing the domain gap. Experimental results demonstrate that significant imrovement can be achieved by the proposed multi-level alignment method in pose estimation, which outperforms previous state-of-the-art in human pose by up to 2.4% and animal pose estimation by up to 3.1% for dogs and 1.4% for sheep.
Abstract:High-resolution representation is essential for achieving good performance in human pose estimation models. To obtain such features, existing works utilize high-resolution input images or fine-grained image tokens. However, this dense high-resolution representation brings a significant computational burden. In this paper, we address the following question: "Only sparse human keypoint locations are detected for human pose estimation, is it really necessary to describe the whole image in a dense, high-resolution manner?" Based on dynamic transformer models, we propose a framework that only uses Sparse High-resolution Representations for human Pose estimation (SHaRPose). In detail, SHaRPose consists of two stages. At the coarse stage, the relations between image regions and keypoints are dynamically mined while a coarse estimation is generated. Then, a quality predictor is applied to decide whether the coarse estimation results should be refined. At the fine stage, SHaRPose builds sparse high-resolution representations only on the regions related to the keypoints and provides refined high-precision human pose estimations. Extensive experiments demonstrate the outstanding performance of the proposed method. Specifically, compared to the state-of-the-art method ViTPose, our model SHaRPose-Base achieves 77.4 AP (+0.5 AP) on the COCO validation set and 76.7 AP (+0.5 AP) on the COCO test-dev set, and infers at a speed of $1.4\times$ faster than ViTPose-Base.