Abstract:Visual Speech Recognition (VSR) aims to recognize corresponding text by analyzing visual information from lip movements. Due to the high variability and weak information of lip movements, VSR tasks require effectively utilizing any information from any source and at any level. In this paper, we propose a VSR method based on audio-visual cross-modal alignment, named AlignVSR. The method leverages the audio modality as an auxiliary information source and utilizes the global and local correspondence between the audio and visual modalities to improve visual-to-text inference. Specifically, the method first captures global alignment between video and audio through a cross-modal attention mechanism from video frames to a bank of audio units. Then, based on the temporal correspondence between audio and video, a frame-level local alignment loss is introduced to refine the global alignment, improving the utility of the audio information. Experimental results on the LRS2 and CNVSRC.Single datasets consistently show that AlignVSR outperforms several mainstream VSR methods, demonstrating its superior and robust performance.
Abstract:In the field of spoken language processing, audio-visual speech processing is receiving increasing research attention. Key components of this research include tasks such as lip reading, audio-visual speech recognition, and visual-to-speech synthesis. Although significant success has been achieved, theoretical analysis is still insufficient for audio-visual tasks. This paper presents a quantitative analysis based on information theory, focusing on information intersection between different modalities. Our results show that this analysis is valuable for understanding the difficulties of audio-visual processing tasks as well as the benefits that could be obtained by modality integration.
Abstract:The first Chinese Continuous Visual Speech Recognition Challenge aimed to probe the performance of Large Vocabulary Continuous Visual Speech Recognition (LVC-VSR) on two tasks: (1) Single-speaker VSR for a particular speaker and (2) Multi-speaker VSR for a set of registered speakers. The challenge yielded highly successful results, with the best submission significantly outperforming the baseline, particularly in the single-speaker task. This paper comprehensively reviews the challenge, encompassing the data profile, task specifications, and baseline system construction. It also summarises the representative techniques employed by the submitted systems, highlighting the most effective approaches. Additional information and resources about this challenge can be accessed through the official website at http://cnceleb.org/competition.
Abstract:Recent studies have advocated the detection of fake videos as a one-class detection task, predicated on the hypothesis that the consistency between audio and visual modalities of genuine data is more significant than that of fake data. This methodology, which solely relies on genuine audio-visual data while negating the need for forged counterparts, is thus delineated as a `zero-shot' detection paradigm. This paper introduces a novel zero-shot detection approach anchored in content consistency across audio and video. By employing pre-trained ASR and VSR models, we recognize the audio and video content sequences, respectively. Then, the edit distance between the two sequences is computed to assess whether the claimed video is genuine. Experimental results indicate that, compared to two mainstream approaches based on semantic consistency and temporal consistency, our approach achieves superior generalizability across various deepfake techniques and demonstrates strong robustness against audio-visual perturbations. Finally, state-of-the-art performance gains can be achieved by simply integrating the decision scores of these three systems.
Abstract:Audio-visual person recognition (AVPR) has received extensive attention. However, most datasets used for AVPR research so far are collected in constrained environments, and thus cannot reflect the true performance of AVPR systems in real-world scenarios. To meet the request for research on AVPR in unconstrained conditions, this paper presents a multi-genre AVPR dataset collected `in the wild', named CN-Celeb-AV. This dataset contains more than 420k video segments from 1,136 persons from public media. In particular, we put more emphasis on two real-world complexities: (1) data in multiple genres; (2) segments with partial information. A comprehensive study was conducted to compare CN-Celeb-AV with two popular public AVPR benchmark datasets, and the results demonstrated that CN-Celeb-AV is more in line with real-world scenarios and can be regarded as a new benchmark dataset for AVPR research. The dataset also involves a development set that can be used to boost the performance of AVPR systems in real-life situations. The dataset is free for researchers and can be downloaded from http://cnceleb.org/.