Abstract:Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
Abstract:As the gold standard for phase retrieval, phase-shifting algorithm (PS) has been widely used in optical interferometry, fringe projection profilometry, etc. However, capturing multiple fringe patterns in PS limits the algorithm to only a narrow range of application. To this end, a deep learning (DL) model based digital PS algorithm from only a single fringe image is proposed. By training on a simulated dataset of PS fringe patterns, the learnt model, denoted PSNet, can predict fringe patterns with other PS steps when given a pattern with the first PS step. Simulation and experiment results demonstrate the PSNet's promising performance on accurate prediction of digital PS patterns, and robustness to complex scenarios such as surfaces with varying curvature and reflectance.