Abstract:The least-square regression problems or inverse problems have been widely studied in many fields such as compressive sensing, signal processing, and image processing. To solve this kind of ill-posed problems, a regularization term (i.e., regularizer) should be introduced, under the assumption that the solutions have some specific properties, such as sparsity and group sparsity. Widely used regularizers include the $\ell_1$ norm, total variation (TV) semi-norm, and so on. Recently, a new regularization term with overlapping group sparsity has been considered. Majorization minimization iteration method or variable duplication methods are often applied to solve them. However, there have been no direct methods for solve the relevant problems because of the difficulty of overlapping. In this paper, we proposed new explicit shrinkage formulas for one class of these relevant problems, whose regularization terms have translation invariant overlapping groups. Moreover, we apply our results in TV deblurring and denoising with overlapping group sparsity. We use alternating direction method of multipliers to iterate solve it. Numerical results also verify the validity and effectiveness of our new explicit shrinkage formulas.
Abstract:The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In this paper, in order to alleviate the staircase effect, we propose a new model for restoring blurred images with impulse noise. The model consists of an $\ell_1$-fidelity term and a TV with overlapping group sparsity (OGS) regularization term. Moreover, we impose a box constraint to the proposed model for getting more accurate solutions. An efficient and effective algorithm is proposed to solve the model under the framework of the alternating direction method of multipliers (ADMM). We use an inner loop which is nested inside the majorization minimization (MM) iteration for the subproblem of the proposed method. Compared with other methods, numerical results illustrate that the proposed method, can significantly improve the restoration quality, both in avoiding staircase effects and in terms of peak signal-to-noise ratio (PSNR) and relative error (ReE).
Abstract:Image restoration is one of the most fundamental issues in imaging science. Total variation (TV) regularization is widely used in image restoration problems for its capability to preserve edges. In the literature, however, it is also well known for producing staircase-like artifacts. Usually, the high-order total variation (HTV) regularizer is an good option except its over-smoothing property. In this work, we study a minimization problem where the objective includes an usual $l_2$ data-fidelity term and an overlapping group sparsity total variation regularizer which can avoid staircase effect and allow edges preserving in the restored image. We also proposed a fast algorithm for solving the corresponding minimization problem and compare our method with the state-of-the-art TV based methods and HTV based method. The numerical experiments illustrate the efficiency and effectiveness of the proposed method in terms of PSNR, relative error and computing time.