Abstract:In expensive multi-objective optimization, where the evaluation budget is strictly limited, selecting promising candidate solutions for expensive fitness evaluations is critical for accelerating convergence and improving algorithmic performance. However, designing an optimization strategy that effectively balances convergence, diversity, and distribution remains a challenge. To tackle this issue, we propose a composite indicator-based evolutionary algorithm (CI-EMO) for expensive multi-objective optimization. In each generation of the optimization process, CI-EMO first employs NSGA-III to explore the solution space based on fitness values predicted by surrogate models, generating a candidate population. Subsequently, we design a novel composite performance indicator to guide the selection of candidates for real fitness evaluation. This indicator simultaneously considers convergence, diversity, and distribution to improve the efficiency of identifying promising candidate solutions, which significantly improves algorithm performance. The composite indicator-based candidate selection strategy is easy to achieve and computes efficiency. Component analysis experiments confirm the effectiveness of each element in the composite performance indicator. Comparative experiments on benchmark problems demonstrate that the proposed algorithm outperforms five state-of-the-art expensive multi-objective optimization algorithms.
Abstract:Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals, providing cost-effective and dense monitoring capabilities. It offers several advantages including resistance to extreme conditions, immunity to electromagnetic interference, and accurate detection. However, DAS typically exhibits a lower signal-to-noise ratio (S/N) compared to geophones and is susceptible to various noise types, such as random noise, erratic noise, level noise, and long-period noise. This reduced S/N can negatively impact data analyses containing inversion and interpretation. While artificial intelligence has demonstrated excellent denoising capabilities, most existing methods rely on supervised learning with labeled data, which imposes stringent requirements on the quality of the labels. To address this issue, we develop a label-free unsupervised learning (UL) network model based on Context-Pyramid-UNet (CP-UNet) to suppress erratic and random noises in DAS data. The CP-UNet utilizes the Context Pyramid Module in the encoding and decoding process to extract features and reconstruct the DAS data. To enhance the connectivity between shallow and deep features, we add a Connected Module (CM) to both encoding and decoding section. Layer Normalization (LN) is utilized to replace the commonly employed Batch Normalization (BN), accelerating the convergence of the model and preventing gradient explosion during training. Huber-loss is adopted as our loss function whose parameters are experimentally determined. We apply the network to both the 2-D synthetic and filed data. Comparing to traditional denoising methods and the latest UL framework, our proposed method demonstrates superior noise reduction performance.
Abstract:In this research, we introduce the enhanced automated quality assessment network (IBS-AQSNet), an innovative solution for assessing the quality of interactive building segmentation within high-resolution remote sensing imagery. This is a new challenge in segmentation quality assessment, and our proposed IBS-AQSNet allievate this by identifying missed and mistaken segment areas. First of all, to acquire robust image features, our method combines a robust, pre-trained backbone with a lightweight counterpart for comprehensive feature extraction from imagery and segmentation results. These features are then fused through a simple combination of concatenation, convolution layers, and residual connections. Additionally, ISR-AQSNet incorporates a multi-scale differential quality assessment decoder, proficient in pinpointing areas where segmentation result is either missed or mistaken. Experiments on a newly-built EVLab-BGZ dataset, which includes over 39,198 buildings, demonstrate the superiority of the proposed method in automating segmentation quality assessment, thereby setting a new benchmark in the field.