Abstract:In this paper we propose DKIBO, a Bayesian optimization (BO) algorithm that accommodates domain knowledge to tune exploration in the search space. Bayesian optimization has recently emerged as a sample-efficient optimizer for many intractable scientific problems. While various existing BO frameworks allow the input of prior beliefs to accelerate the search by narrowing down the space, incorporating such knowledge is not always straightforward and can often introduce bias and lead to poor performance. Here we propose a simple approach to incorporate structural knowledge in the acquisition function by utilizing an additional deterministic surrogate model to enrich the approximation power of the Gaussian process. This is suitably chosen according to structural information of the problem at hand and acts a corrective term towards a better-informed sampling. We empirically demonstrate the practical utility of the proposed method by successfully injecting domain knowledge in a materials design task. We further validate our method's performance on different experimental settings and ablation analyses.
Abstract:Dimensionality reduction (DR) is one of the key tools for the visual exploration of high-dimensional data and uncovering its cluster structure in two- or three-dimensional spaces. The vast majority of DR methods in the literature do not take into account any prior knowledge a practitioner may have regarding the dataset under consideration. We propose a novel method to generate informative embeddings which not only factor out the structure associated with different kinds of prior knowledge but also aim to reveal any remaining underlying structure. To achieve this, we employ a linear combination of two objectives: firstly, contrastive PCA that discounts the structure associated with the prior information, and secondly, kurtosis projection pursuit which ensures meaningful data separation in the obtained embeddings. We formulate this task as a manifold optimization problem and validate it empirically across a variety of datasets considering three distinct types of prior knowledge. Lastly, we provide an automated framework to perform iterative visual exploration of high-dimensional data.
Abstract:Robotics and automation offer massive accelerations for solving intractable, multivariate scientific problems such as materials discovery, but the available search spaces can be dauntingly large. Bayesian optimization (BO) has emerged as a popular sample-efficient optimization engine, thriving in tasks where no analytic form of the target function/property is known. Here we exploit expert human knowledge in the form of hypotheses to direct Bayesian searches more quickly to promising regions of chemical space. Previous methods have used underlying distributions derived from existing experimental measurements, which is unfeasible for new, unexplored scientific tasks. Also, such distributions cannot capture intricate hypotheses. Our proposed method, which we call HypBO, uses expert human hypotheses to generate an improved seed of samples. Unpromising seeds are automatically discounted, while promising seeds are used to augment the surrogate model data, thus achieving better-informed sampling. This process continues in a global versus local search fashion, organized in a bilevel optimization framework. We validate the performance of our method on a range of synthetic functions and demonstrate its practical utility on a real chemical design task where the use of expert hypotheses accelerates the search performance significantly.