Abstract:In this study, we introduce a method for estimating sound fields in reverberant environments using a conditional invertible neural network (CINN). Sound field reconstruction can be hindered by experimental errors, limited spatial data, model mismatches, and long inference times, leading to potentially flawed and prolonged characterizations. Further, the complexity of managing inherent uncertainties often escalates computational demands or is neglected in models. Our approach seeks to balance accuracy and computational efficiency, while incorporating uncertainty estimates to tailor reconstructions to specific needs. By training a CINN with Monte Carlo simulations of random wave fields, our method reduces the dependency on extensive datasets and enables inference from sparse experimental data. The CINN proves versatile at reconstructing Room Impulse Responses (RIRs), by acting either as a likelihood model for maximum a posteriori estimation or as an approximate posterior distribution through amortized Bayesian inference. Compared to traditional Bayesian methods, the CINN achieves similar accuracy with greater efficiency and without requiring its adaptation to distinct sound field conditions.
Abstract:Recent developments in acoustic signal processing have seen the integration of deep learning methodologies, alongside the continued prominence of classical wave expansion-based approaches, particularly in sound field reconstruction. Physics-Informed Neural Networks (PINNs) have emerged as a novel framework, bridging the gap between data-driven and model-based techniques for addressing physical phenomena governed by partial differential equations. This paper introduces a PINN-based approach for the recovery of arbitrary volumetric acoustic fields. The network incorporates the wave equation to impose a regularization on signal reconstruction in the time domain. This methodology enables the network to learn the underlying physics of sound propagation and allows for the complete characterization of the sound field based on a limited set of observations. The proposed method's efficacy is validated through experiments involving speech signals in a real-world environment, considering varying numbers of available measurements. Moreover, a comparative analysis is undertaken against state-of-the-art frequency-domain and time-domain reconstruction methods from existing literature, highlighting the increased accuracy across the various measurement configurations.
Abstract:A method is presented for estimating and reconstructing the sound field within a room using physics-informed neural networks. By incorporating a limited set of experimental room impulse responses as training data, this approach combines neural network processing capabilities with the underlying physics of sound propagation, as articulated by the wave equation. The network's ability to estimate particle velocity and intensity, in addition to sound pressure, demonstrates its capacity to represent the flow of acoustic energy and completely characterise the sound field with only a few measurements. Additionally, an investigation into the potential of this network as a tool for improving acoustic simulations is conducted. This is due to its profficiency in offering grid-free sound field mappings with minimal inference time. Furthermore, a study is carried out which encompasses comparative analyses against current approaches for sound field reconstruction. Specifically, the proposed approach is evaluated against both data-driven techniques and elementary wave-based regression methods. The results demonstrate that the physics-informed neural network stands out when reconstructing the early part of the room impulse response, while simultaneously allowing for complete sound field characterisation in the time domain.
Abstract:This paper presents a deep learning-based approach for the spatio-temporal reconstruction of sound fields using Generative Adversarial Networks (GANs). The method utilises a plane wave basis and learns the underlying statistical distributions of pressure in rooms to accurately reconstruct sound fields from a limited number of measurements. The performance of the method is evaluated using two established datasets and compared to state-of-the-art methods. The results show that the model is able to achieve an improved reconstruction performance in terms of accuracy and energy retention, particularly in the high-frequency range and when extrapolating beyond the measurement region. Furthermore, the proposed method can handle a varying number of measurement positions and configurations without sacrificing performance. The results suggest that this approach provides a promising approach to sound field reconstruction using generative models that allow for a physically informed prior to acoustics problems.