Abstract:Recent research on knowledge distillation has increasingly focused on logit distillation because of its simplicity, effectiveness, and versatility in model compression. In this paper, we introduce Refined Logit Distillation (RLD) to address the limitations of current logit distillation methods. Our approach is motivated by the observation that even high-performing teacher models can make incorrect predictions, creating a conflict between the standard distillation loss and the cross-entropy loss. This conflict can undermine the consistency of the student model's learning objectives. Previous attempts to use labels to empirically correct teacher predictions may undermine the class correlation. In contrast, our RLD employs labeling information to dynamically refine teacher logits. In this way, our method can effectively eliminate misleading information from the teacher while preserving crucial class correlations, thus enhancing the value and efficiency of distilled knowledge. Experimental results on CIFAR-100 and ImageNet demonstrate its superiority over existing methods. The code is provided at \text{https://github.com/zju-SWJ/RLD}.
Abstract:Deep learning has witnessed significant advancements in recent years at the cost of increasing training, inference, and model storage overhead. While existing model compression methods strive to reduce the number of model parameters while maintaining high accuracy, they inevitably necessitate the re-training of the compressed model or impose architectural constraints. To overcome these limitations, this paper presents a novel framework, termed \textbf{K}nowledge \textbf{T}ranslation (KT), wherein a ``translation'' model is trained to receive the parameters of a larger model and generate compressed parameters. The concept of KT draws inspiration from language translation, which effectively employs neural networks to convert different languages, maintaining identical meaning. Accordingly, we explore the potential of neural networks to convert models of disparate sizes, while preserving their functionality. We propose a comprehensive framework for KT, introduce data augmentation strategies to enhance model performance despite restricted training data, and successfully demonstrate the feasibility of KT on the MNIST dataset. Code is available at \url{https://github.com/zju-SWJ/KT}.
Abstract:Although diffusion model has shown great potential for generating higher quality images than GANs, slow sampling speed hinders its wide application in practice. Progressive distillation is thus proposed for fast sampling by progressively aligning output images of $N$-step teacher sampler with $N/2$-step student sampler. In this paper, we argue that this distillation-based accelerating method can be further improved, especially for few-step samplers, with our proposed \textbf{C}lassifier-based \textbf{F}eature \textbf{D}istillation (CFD). Instead of aligning output images, we distill teacher's sharpened feature distribution into the student with a dataset-independent classifier, making the student focus on those important features to improve performance. We also introduce a dataset-oriented loss to further optimize the model. Experiments on CIFAR-10 show the superiority of our method in achieving high quality and fast sampling. Code will be released soon.