Abstract:Current diffusion models create photorealistic images given a text prompt as input but struggle to correctly bind attributes mentioned in the text to the right objects in the image. This is evidenced by our novel image-graph alignment model called EPViT (Edge Prediction Vision Transformer) for the evaluation of image-text alignment. To alleviate the above problem, we propose focused cross-attention (FCA) that controls the visual attention maps by syntactic constraints found in the input sentence. Additionally, the syntax structure of the prompt helps to disentangle the multimodal CLIP embeddings that are commonly used in T2I generation. The resulting DisCLIP embeddings and FCA are easily integrated in state-of-the-art diffusion models without additional training of these models. We show substantial improvements in T2I generation and especially its attribute-object binding on several datasets.\footnote{Code and data will be made available upon acceptance.
Abstract:Recognizing visual entities in a natural language sentence and arranging them in a 2D spatial layout require a compositional understanding of language and space. This task of layout prediction is valuable in text-to-image synthesis as it allows localized and controlled in-painting of the image. In this comparative study it is shown that we can predict layouts from language representations that implicitly or explicitly encode sentence syntax, if the sentences mention similar entity-relationships to the ones seen during training. To test compositional understanding, we collect a test set of grammatically correct sentences and layouts describing compositions of entities and relations that unlikely have been seen during training. Performance on this test set substantially drops, showing that current models rely on correlations in the training data and have difficulties in understanding the structure of the input sentences. We propose a novel structural loss function that better enforces the syntactic structure of the input sentence and show large performance gains in the task of 2D spatial layout prediction conditioned on text. The loss has the potential to be used in other generation tasks where a tree-like structure underlies the conditioning modality. Code, trained models and the USCOCO evaluation set will be made available via github.