Abstract:Self-organization is frequently observed in active collectives, from ant rafts to molecular motor assemblies. General principles describing self-organization away from equilibrium have been challenging to identify. We offer a unifying framework that models the behavior of complex systems as largely random, while capturing their configuration-dependent response to external forcing. This allows derivation of a Boltzmann-like principle for understanding and manipulating driven self-organization. We validate our predictions experimentally in shape-changing robotic active matter, and outline a methodology for controlling collective behavior. Our findings highlight how emergent order depends sensitively on the matching between external patterns of forcing and internal dynamical response properties, pointing towards future approaches for design and control of active particle mixtures and metamaterials.
Abstract:Robotic materials are multi-robot systems formulated to leverage the low-order computation and actuation of the constituents to manipulate the high-order behavior of the entire material. We study the behaviors of ensembles composed of smart active particles, smarticles. Smarticles are small, low cost robots equipped with basic actuation and sensing abilities that are individually incapable of rotating or displacing. We demonstrate that a "supersmarticle", composed of many smarticles constrained within a bounding membrane, can harness the internal collisions of the robotic material among the constituents and the membrane to achieve diffusive locomotion. The emergent diffusion can be directed by modulating the robotic material properties in response to a light source, analogous to biological phototaxis. The light source introduces asymmetries within the robotic material, resulting in modified populations of interaction modes and dynamics which ultimately result in supersmarticle biased locomotion. We present experimental methods and results for the robotic material which moves with a directed displacement in response to a light source.
Abstract:Smarticles, or smart active particles, are small robots equipped with only basic movement and sensing abilities that are incapable of rotating or displacing individually. We study the ensemble behavior of smarticles, i.e., the behavior a collective of these very simple computational elements can achieve, and how such behavior can be implemented using minimal programming. We show that an ensemble of smarticles constrained to remain close to one another (which we call a supersmarticle), achieves directed locomotion toward or away from a light source, a phenomenon known as phototaxing. We present experimental and theoretical models of phototactic supersmarticles that collectively move with a directed displacement in response to light. The motion of the supersmarticle is approximately Brownian, and is a result of chaotic interactions among smarticles. The system can be directed by introducing asymmetries among the individual smarticle's behavior, in our case by varying activity levels in response to light, resulting in supersmarticle biased motion.