Abstract:The greatest demand for today's computing is machine learning. This paper analyzes three machine learning algorithms: transformers, spatial convolution, and FFT. The analysis is novel in three aspects. First, it measures the cost of memory access on an abstract memory hierarchy, instead of traditional time or space complexity. Second, the analysis is asymptotic and identifies the primary sources of the memory cost. Finally, the result is symbolic, which can be used to select algorithmic parameters such as the group size in grouped query attention for any dimension size and number of heads and the batch size for batched convolution for any image size and kernel size.
Abstract:We introduce the Unity Perception package which aims to simplify and accelerate the process of generating synthetic datasets for computer vision tasks by offering an easy-to-use and highly customizable toolset. This open-source package extends the Unity Editor and engine components to generate perfectly annotated examples for several common computer vision tasks. Additionally, it offers an extensible Randomization framework that lets the user quickly construct and configure randomized simulation parameters in order to introduce variation into the generated datasets. We provide an overview of the provided tools and how they work, and demonstrate the value of the generated synthetic datasets by training a 2D object detection model. The model trained with mostly synthetic data outperforms the model trained using only real data.