Abstract:We present ExaDigiT, an open-source framework for developing comprehensive digital twins of liquid-cooled supercomputers. It integrates three main modules: (1) a resource allocator and power simulator, (2) a transient thermo-fluidic cooling model, and (3) an augmented reality model of the supercomputer and central energy plant. The framework enables the study of "what-if" scenarios, system optimizations, and virtual prototyping of future systems. Using Frontier as a case study, we demonstrate the framework's capabilities by replaying six months of system telemetry for systematic verification and validation. Such a comprehensive analysis of a liquid-cooled exascale supercomputer is the first of its kind. ExaDigiT elucidates complex transient cooling system dynamics, runs synthetic or real workloads, and predicts energy losses due to rectification and voltage conversion. Throughout our paper, we present lessons learned to benefit HPC practitioners developing similar digital twins. We envision the digital twin will be a key enabler for sustainable, energy-efficient supercomputing.
Abstract:In a post-ChatGPT world, this paper explores the potential of leveraging scalable artificial intelligence for scientific discovery. We propose that scaling up artificial intelligence on high-performance computing platforms is essential to address such complex problems. This perspective focuses on scientific use cases like cognitive simulations, large language models for scientific inquiry, medical image analysis, and physics-informed approaches. The study outlines the methodologies needed to address such challenges at scale on supercomputers or the cloud and provides exemplars of such approaches applied to solve a variety of scientific problems.