Abstract:This paper introduces M$^{3}$-20M, a large-scale Multi-Modal Molecular dataset that contains over 20 million molecules. Designed to support AI-driven drug design and discovery, M$^{3}$-20M is 71 times more in the number of molecules than the largest existing dataset, providing an unprecedented scale that can highly benefit training or fine-tuning large (language) models with superior performance for drug design and discovery. This dataset integrates one-dimensional SMILES, two-dimensional molecular graphs, three-dimensional molecular structures, physicochemical properties, and textual descriptions collected through web crawling and generated by using GPT-3.5, offering a comprehensive view of each molecule. To demonstrate the power of M$^{3}$-20M in drug design and discovery, we conduct extensive experiments on two key tasks: molecule generation and molecular property prediction, using large language models including GLM4, GPT-3.5, and GPT-4. Our experimental results show that M$^{3}$-20M can significantly boost model performance in both tasks. Specifically, it enables the models to generate more diverse and valid molecular structures and achieve higher property prediction accuracy than the existing single-modal datasets, which validates the value and potential of M$^{3}$-20M in supporting AI-driven drug design and discovery. The dataset is available at \url{https://github.com/bz99bz/M-3}.
Abstract:Multimodal sentiment analysis is an active research area that combines multiple data modalities, e.g., text, image and audio, to analyze human emotions and benefits a variety of applications. Existing multimodal sentiment analysis methods can be classified as modality interaction-based methods, modality transformation-based methods and modality similarity-based methods. However, most of these methods highly rely on the strong correlations between modalities, and cannot fully uncover and utilize the correlations between modalities to enhance sentiment analysis. Therefore, these methods usually achieve bad performance for identifying the sentiment of multimodal data with weak correlations. To address this issue, we proposed a two-stage semi-supervised model termed Correlation-aware Multimodal Transformer (CorMulT) which consists pre-training stage and prediction stage. At the pre-training stage, a modality correlation contrastive learning module is designed to efficiently learn modality correlation coefficients between different modalities. At the prediction stage, the learned correlation coefficients are fused with modality representations to make the sentiment prediction. According to the experiments on the popular multimodal dataset CMU-MOSEI, CorMulT obviously surpasses state-of-the-art multimodal sentiment analysis methods.
Abstract:Temporal causal discovery is a crucial task aimed at uncovering the causal relations within time series data. The latest temporal causal discovery methods usually train deep learning models on prediction tasks to uncover the causality between time series. They capture causal relations by analyzing the parameters of some components of the trained models, e.g., attention weights and convolution weights. However, this is an incomplete mapping process from the model parameters to the causality and fails to investigate the other components, e.g., fully connected layers and activation functions, that are also significant for causal discovery. To facilitate the utilization of the whole deep learning models in temporal causal discovery, we proposed an interpretable transformer-based causal discovery model termed CausalFormer, which consists of the causality-aware transformer and the decomposition-based causality detector. The causality-aware transformer learns the causal representation of time series data using a prediction task with the designed multi-kernel causal convolution which aggregates each input time series along the temporal dimension under the temporal priority constraint. Then, the decomposition-based causality detector interprets the global structure of the trained causality-aware transformer with the proposed regression relevance propagation to identify potential causal relations and finally construct the causal graph. Experiments on synthetic, simulated, and real datasets demonstrate the state-of-the-art performance of CausalFormer on discovering temporal causality. Our code is available at https://github.com/lingbai-kong/CausalFormer.
Abstract:With the rapid amassing of spatial-temporal (ST) ocean data, many spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, including climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated but with unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models on ST ocean data. To the best of our knowledge, a comprehensive survey of existing studies remains missing in the literature, which hinders not only computer scientists from identifying the research issues in ocean data mining but also ocean scientists to apply advanced STDM techniques. In this paper, we provide a comprehensive survey of existing STDM studies for ocean science. Concretely, we first review the widely-used ST ocean datasets and highlight their unique characteristics. Then, typical ST ocean data quality enhancement techniques are explored. Next, we classify existing STDM studies in ocean science into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate on the techniques for these tasks. Finally, promising research opportunities are discussed. This survey can help scientists from both computer science and ocean science better understand the fundamental concepts, key techniques, and open challenges of STDM for ocean science.