Abstract:The fragility of modern machine learning models has drawn a considerable amount of attention from both academia and the public. While immense interests were in either crafting adversarial attacks as a way to measure the robustness of neural networks or devising worst-case analytical robustness verification with guarantees, few methods could enjoy both scalability and robustness guarantees at the same time. As an alternative to these attempts, randomized smoothing adopts a different prediction rule that enables statistical robustness arguments and can scale to large networks. However, in this paper, we point out for the first time the side effects of current randomized smoothing workflows. Specifically, we articulate and prove two major points: 1) the decision boundaries shrink with the adoption of randomized smoothing prediction rule; 2) noise augmentation does not necessarily resolve the shrinking issue and can even create additional issues.
Abstract:Verifying robustness of neural networks given a specified threat model is a fundamental yet challenging task. While current verification methods mainly focus on the L_p-norm-ball threat model of the input instances, robustness verification against semantic adversarial attacks inducing large L_p-norm perturbations such as color shifting and lighting adjustment are beyond their capacity. To bridge this gap, we propose Semantify-NN, a model-agnostic and generic robustness verification approach against semantic perturbations for neural networks. By simply inserting our proposed semantic perturbation layers (SP-layers) to the input layer of any given model, Semantify-NN is model-agnostic, and any $L_p$-norm-ball based verification tools can be used to verify the model robustness against semantic perturbations. We illustrate the principles of designing the SP-layers and provide examples including semantic perturbations to image classification in the space of hue, saturation, lightness, brightness, contrast and rotation, respectively. Experimental results on various network architectures and different datasets demonstrate the superior verification performance of Semantify-NN over L_p-norm-based verification frameworks that naively convert semantic perturbation to L_p-norm. To the best of our knowledge, Semantify-NN is the first framework to support robustness verification against a wide range of semantic perturbations.