Abstract:Existing methods on understanding the capabilities of LLMs in logical reasoning rely on binary entailment classification or synthetically derived rationales, which are not sufficient for proper investigation of model's capabilities. We present P-FOLIO, a human-annotated dataset consisting of diverse and complex reasoning chains for a set of realistic logical reasoning stories also written by humans. P-FOLIO is collected with an annotation protocol that facilitates humans to annotate well-structured natural language proofs for first-order logic reasoning problems in a step-by-step manner. The number of reasoning steps in P-FOLIO span from 0 to 20. We further use P-FOLIO to evaluate and improve large-language-model (LLM) reasoning capabilities. We evaluate LLM reasoning capabilities at a fine granularity via single-step inference rule classification, with more diverse inference rules of more diverse and higher levels of complexities than previous works. Given that a single model-generated reasoning chain could take a completely different path than the human-annotated one, we sample multiple reasoning chains from a model and use pass@k metrics for evaluating the quality of model-generated reasoning chains. We show that human-written reasoning chains significantly boost the logical reasoning capabilities of LLMs via many-shot prompting and fine-tuning. Furthermore, fine-tuning Llama3-7B on P-FOLIO improves the model performance by 10% or more on three other out-of-domain logical reasoning datasets. We also conduct detailed analysis to show where most powerful LLMs fall short in reasoning. We will release the dataset and code publicly.
Abstract:This study introduces a new long-form database question answering dataset designed to evaluate how Large Language Models (LLMs) interact with a SQL interpreter. The task necessitates LLMs to strategically generate multiple SQL queries to retrieve sufficient data from a database, to reason with the acquired context, and to synthesize them into a comprehensive analytical narrative. Our findings highlight that this task poses great challenges even for the state-of-the-art GPT-4 model. We propose and evaluate two interaction strategies, and provide a fine-grained analysis of the individual stages within the interaction. A key discovery is the identification of two primary bottlenecks hindering effective interaction: the capacity for planning and the ability to generate multiple SQL queries. To address the challenge of accurately assessing answer quality, we introduce a multi-agent evaluation framework that simulates the academic peer-review process, enhancing the precision and reliability of our evaluations. This framework allows for a more nuanced understanding of the strengths and limitations of current LLMs in complex retrieval and reasoning tasks.