Abstract:This paper introduces a new approach for generating globally consistent normals for point clouds sampled from manifold surfaces. Given that the generalized winding number (GWN) field generated by a point cloud with globally consistent normals is a solution to a PDE with jump boundary conditions and possesses harmonic properties, and the Dirichlet energy of the GWN field can be defined as an integral over the boundary surface, we formulate a boundary energy derived from the Dirichlet energy of the GWN. Taking as input a point cloud with randomly oriented normals, we optimize this energy to restore the global harmonicity of the GWN field, thereby recovering the globally consistent normals. Experiments show that our method outperforms state-of-the-art approaches, exhibiting enhanced robustness to noise, outliers, complex topologies, and thin structures. Our code can be found at \url{https://github.com/liuweizhou319/BIM}.
Abstract:In the field of 3D object detection for autonomous driving, the sensor portfolio including multi-modality and single-modality is diverse and complex. Since the multi-modal methods have system complexity while the accuracy of single-modal ones is relatively low, how to make a tradeoff between them is difficult. In this work, we propose a universal cross-modality knowledge distillation framework (UniDistill) to improve the performance of single-modality detectors. Specifically, during training, UniDistill projects the features of both the teacher and the student detector into Bird's-Eye-View (BEV), which is a friendly representation for different modalities. Then, three distillation losses are calculated to sparsely align the foreground features, helping the student learn from the teacher without introducing additional cost during inference. Taking advantage of the similar detection paradigm of different detectors in BEV, UniDistill easily supports LiDAR-to-camera, camera-to-LiDAR, fusion-to-LiDAR and fusion-to-camera distillation paths. Furthermore, the three distillation losses can filter the effect of misaligned background information and balance between objects of different sizes, improving the distillation effectiveness. Extensive experiments on nuScenes demonstrate that UniDistill effectively improves the mAP and NDS of student detectors by 2.0%~3.2%.
Abstract:3D Semantic Scene Completion (SSC) can provide dense geometric and semantic scene representations, which can be applied in the field of autonomous driving and robotic systems. It is challenging to estimate the complete geometry and semantics of a scene solely from visual images, and accurate depth information is crucial for restoring 3D geometry. In this paper, we propose the first stereo SSC method named OccDepth, which fully exploits implicit depth information from stereo images (or RGBD images) to help the recovery of 3D geometric structures. The Stereo Soft Feature Assignment (Stereo-SFA) module is proposed to better fuse 3D depth-aware features by implicitly learning the correlation between stereo images. In particular, when the input are RGBD image, a virtual stereo images can be generated through original RGB image and depth map. Besides, the Occupancy Aware Depth (OAD) module is used to obtain geometry-aware 3D features by knowledge distillation using pre-trained depth models. In addition, a reformed TartanAir benchmark, named SemanticTartanAir, is provided in this paper for further testing our OccDepth method on SSC task. Compared with the state-of-the-art RGB-inferred SSC method, extensive experiments on SemanticKITTI show that our OccDepth method achieves superior performance with improving +4.82% mIoU, of which +2.49% mIoU comes from stereo images and +2.33% mIoU comes from our proposed depth-aware method. Our code and trained models are available at https://github.com/megvii-research/OccDepth.