Abstract:We propose Diverse Restormer (DART), a novel image restoration method that effectively integrates information from various sources (long sequences, local and global regions, feature dimensions, and positional dimensions) to address restoration challenges. While Transformer models have demonstrated excellent performance in image restoration due to their self-attention mechanism, they face limitations in complex scenarios. Leveraging recent advancements in Transformers and various attention mechanisms, our method utilizes customized attention mechanisms to enhance overall performance. DART, our novel network architecture, employs windowed attention to mimic the selective focusing mechanism of human eyes. By dynamically adjusting receptive fields, it optimally captures the fundamental features crucial for image resolution reconstruction. Efficiency and performance balance are achieved through the LongIR attention mechanism for long sequence image restoration. Integration of attention mechanisms across feature and positional dimensions further enhances the recovery of fine details. Evaluation across five restoration tasks consistently positions DART at the forefront. Upon acceptance, we commit to providing publicly accessible code and models to ensure reproducibility and facilitate further research.
Abstract:Super Resolution (SR) and Camouflaged Object Detection (COD) are two hot topics in computer vision with various joint applications. For instance, low-resolution surveillance images can be successively processed by super-resolution techniques and camouflaged object detection. However, in previous work, these two areas are always studied in isolation. In this paper, we, for the first time, conduct an integrated comparative evaluation for both. Specifically, we benchmark different super-resolution methods on commonly used COD datasets, and meanwhile, we evaluate the robustness of different COD models by using COD data processed by SR methods. Our goal is to bridge these two domains, discover novel experimental phenomena, summarize new experim.