Abstract:The rapidly expanding landscape of bioimage analysis tools presents a navigational challenge for both experts and newcomers. Traditional search methods often fall short in assisting users in this complex environment. To address this, we introduce the BioImage$.$IO Chatbot, an AI-driven conversational assistant tailored for the bioimage community. Built upon large language models, this chatbot provides personalized, context-aware answers by aggregating and interpreting information from diverse databases, tool-specific documentation, and structured data sources. Enhanced by a community-contributed knowledge base and fine-tuned retrieval methods, the BioImage$.$IO Chatbot offers not just a personalized interaction but also a knowledge-enriched, context-aware experience. It fundamentally transforms the way biologists, bioimage analysts, and developers navigate and utilize advanced bioimage analysis tools, setting a new standard for community-driven, accessible scientific research.
Abstract:Edge computing provides a promising paradigm to support the implementation of Industrial Internet of Things (IIoT) by offloading tasks to nearby edge nodes. Meanwhile, the increasing network size makes it impractical for centralized data processing due to limited bandwidth, and consequently a decentralized learning scheme is preferable. Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes. For RL in a decentralized setup, edge nodes (agents) connected through a communication network aim to work collaboratively to find a policy to optimize the global reward as the sum of local rewards. However, communication costs, scalability and adaptation in complex environments with heterogeneous agents may significantly limit the performance of decentralized RL. Alternating direction method of multipliers (ADMM) has a structure that allows for decentralized implementation, and has shown faster convergence than gradient descent based methods. Therefore, we propose an adaptive stochastic incremental ADMM (asI-ADMM) algorithm and apply the asI-ADMM to decentralized RL with edge-computing-empowered IIoT networks. We provide convergence properties for proposed algorithms by designing a Lyapunov function and prove that the asI-ADMM has $O(\frac{1}{k}) +O(\frac{1}{M})$ convergence rate where $k$ and $ M$ are the number of iterations and batch samples, respectively. Then, we test our algorithm with two supervised learning problems. For performance evaluation, we simulate two applications in decentralized RL settings with homogeneous and heterogeneous agents. The experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.