Abstract:The rapidly expanding landscape of bioimage analysis tools presents a navigational challenge for both experts and newcomers. Traditional search methods often fall short in assisting users in this complex environment. To address this, we introduce the BioImage$.$IO Chatbot, an AI-driven conversational assistant tailored for the bioimage community. Built upon large language models, this chatbot provides personalized, context-aware answers by aggregating and interpreting information from diverse databases, tool-specific documentation, and structured data sources. Enhanced by a community-contributed knowledge base and fine-tuned retrieval methods, the BioImage$.$IO Chatbot offers not just a personalized interaction but also a knowledge-enriched, context-aware experience. It fundamentally transforms the way biologists, bioimage analysts, and developers navigate and utilize advanced bioimage analysis tools, setting a new standard for community-driven, accessible scientific research.
Abstract:Over the course of the past two decades, a substantial body of research has substantiated the viability of utilising cardiac signals as a biometric modality. This paper presents a novel approach for patient identification in healthcare systems using electrocardiogram signals. A convolutional neural network is used to classify users based on images extracted from ECG signals. The proposed identification system is evaluated in multiple databases, providing a comprehensive understanding of its potential in real-world scenarios. The impact of Cardiovascular Diseases on generic user identification has been largely overlooked in previous studies. The presented method takes into account the cardiovascular condition of the patients, ensuring that the results obtained are not biased or limited. Furthermore, the results obtained are consistent and reliable, with lower error rates and higher accuracy metrics, as demonstrated through extensive experimentation. All these features make the proposed method a valuable contribution to the field of patient identification in healthcare systems, and make it a strong contender for practical applications.