Abstract:Language models (LMs) are increasingly used to simulate human-like responses in scenarios where accurately mimicking a population's behavior can guide decision-making, such as in developing educational materials and designing public policies. The objective of these simulations is for LMs to capture the variations in human responses, rather than merely providing the expected correct answers. Prior work has shown that LMs often generate unrealistically accurate responses, but there are no established metrics to quantify how closely the knowledge distribution of LMs aligns with that of humans. To address this, we introduce "psychometric alignment," a metric that measures the extent to which LMs reflect human knowledge distribution. Assessing this alignment involves collecting responses from both LMs and humans to the same set of test items and using Item Response Theory to analyze the differences in item functioning between the groups. We demonstrate that our metric can capture important variations in populations that traditional metrics, like differences in accuracy, fail to capture. We apply this metric to assess existing LMs for their alignment with human knowledge distributions across three real-world domains. We find significant misalignment between LMs and human populations, though using persona-based prompts can improve alignment. Interestingly, smaller LMs tend to achieve greater psychometric alignment than larger LMs. Further, training LMs on human response data from the target distribution enhances their psychometric alignment on unseen test items, but the effectiveness of such training varies across domains.
Abstract:How (dis)similar are the learning trajectories of vision-language models and children? Recent modeling work has attempted to understand the gap between models' and humans' data efficiency by constructing models trained on less data, especially multimodal naturalistic data. However, such models are often evaluated on adult-level benchmarks, with limited breadth in language abilities tested, and without direct comparison to behavioral data. We introduce DevBench, a multimodal benchmark comprising seven language evaluation tasks spanning the domains of lexical, syntactic, and semantic ability, with behavioral data from both children and adults. We evaluate a set of vision-language models on these tasks, comparing models and humans not only on accuracy but on their response patterns. Across tasks, models exhibit variation in their closeness to human response patterns, and models that perform better on a task also more closely resemble human behavioral responses. We also examine the developmental trajectory of OpenCLIP over training, finding that greater training results in closer approximations to adult response patterns. DevBench thus provides a benchmark for comparing models to human language development. These comparisons highlight ways in which model and human language learning processes diverge, providing insight into entry points for improving language models.
Abstract:Developing an educational test can be expensive and time-consuming, as each item must be written by experts and then evaluated by collecting hundreds of student responses. Moreover, many tests require multiple distinct sets of questions administered throughout the school year to closely monitor students' progress, known as parallel tests. In this study, we focus on tests of silent sentence reading efficiency, used to assess students' reading ability over time. To generate high-quality parallel tests, we propose to fine-tune large language models (LLMs) to simulate how previous students would have responded to unseen items. With these simulated responses, we can estimate each item's difficulty and ambiguity. We first use GPT-4 to generate new test items following a list of expert-developed rules and then apply a fine-tuned LLM to filter the items based on criteria from psychological measurements. We also propose an optimal-transport-inspired technique for generating parallel tests and show the generated tests closely correspond to the original test's difficulty and reliability based on crowdworker responses. Our evaluation of a generated test with 234 students from grades 2 to 8 produces test scores highly correlated (r=0.93) to those of a standard test form written by human experts and evaluated across thousands of K-12 students.