Abstract:Density functional theory (DFT) is probably the most promising approach for quantum chemistry calculations considering its good balance between calculations precision and speed. In recent years, several neural network-based functionals have been developed for exchange-correlation energy approximation in DFT, DM21 developed by Google Deepmind being the most notable between them. This study focuses on evaluating the efficiency of DM21 functional in predicting molecular geometries, with a focus on the influence of oscillatory behavior in neural network exchange-correlation functionals. We implemented geometry optimization in PySCF for the DM21 functional in geometry optimization problem, compared its performance with traditional functionals, and tested it on various benchmarks. Our findings reveal both the potential and the current challenges of using neural network functionals for geometry optimization in DFT. We propose a solution extending the practical applicability of such functionals and allowing to model new substances with their help.
Abstract:Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts to make them safe. While ocean-ice numerical models are highly computationally intensive, relatively lightweight ML-based methods may be more efficient in this task. Many works have exploited different deep learning models alongside classical approaches for predicting sea ice concentration in the Arctic. However, only a few focus on daily operational forecasts and consider the real-time availability of data they need for operation. In this work, we aim to close this gap and investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days. We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions, ensuring its generalization abilities. As a practical outcome, we build a fast and flexible tool that produces operational sea ice forecasts in the Barents Sea, the Labrador Sea, and the Laptev Sea regions.