Abstract:While deep learning gradually penetrates operational planning, its inherent prediction errors may significantly affect electricity prices. This letter examines how prediction errors propagate into electricity prices, revealing notable pricing errors and their spatial disparity in congested power systems. To improve fairness, we propose to embed electricity market-clearing optimization as a deep learning layer. Differentiating through this layer allows for balancing between prediction and pricing errors, as oppose to minimizing prediction errors alone. This layer implicitly optimizes fairness and controls the spatial distribution of price errors across the system. We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing.
Abstract:While power systems research relies on the availability of real-world network datasets, data owners (e.g., system operators) are hesitant to share data due to security and privacy risks. To control these risks, we develop privacy-preserving algorithms for the synthetic generation of optimization and machine learning datasets. Taking a real-world dataset as input, the algorithms output its noisy, synthetic version, which preserves the accuracy of the real data on a specific downstream model or even a large population of those. We control the privacy loss using Laplace and Exponential mechanisms of differential privacy and preserve data accuracy using a post-processing convex optimization. We apply the algorithms to generate synthetic network parameters and wind power data.
Abstract:Gas network planning optimization under emission constraints prioritizes gas supply with the least CO$_2$ intensity. As this problem includes complex physical laws of gas flow, standard optimization solvers cannot guarantee convergence to a feasible solution. To address this issue, we develop an input-convex neural network (ICNN) aided optimization routine which incorporates a set of trained ICNNs approximating the gas flow equations with high precision. Numerical tests on the Belgium gas network demonstrate that the ICNN-aided optimization dominates non-convex and relaxation-based solvers, with larger optimality gains pertaining to stricter emission targets. Moreover, whenever the non-convex solver fails, the ICNN-aided optimization provides a feasible solution to network planning.
Abstract:This paper develops a novel differentially private framework to solve convex optimization problems with sensitive optimization data and complex physical or operational constraints. Unlike standard noise-additive algorithms, that act primarily on the problem data, objective or solution, and disregard the problem constraints, this framework requires the optimization variables to be a function of the noise and exploits a chance-constrained problem reformulation with formal feasibility guarantees. The noise is calibrated to provide differential privacy for identity and linear queries on the optimization solution. For many applications, including resource allocation problems, the proposed framework provides a trade-off between the expected optimality loss and the variance of optimization results.