Abstract:VIBETENSOR is an open-source research system software stack for deep learning, generated by LLM-powered coding agents under high-level human guidance. In this paper, "fully generated" refers to code provenance: implementation changes were produced and applied as agent-proposed diffs; validation relied on agent-run builds, tests, and differential checks, without per-change manual diff review. It implements a PyTorch-style eager tensor library with a C++20 core (CPU+CUDA), a torch-like Python overlay via nanobind, and an experimental Node.js/TypeScript interface. Unlike thin bindings, VIBETENSOR includes its own tensor/storage system, schema-lite dispatcher, reverse-mode autograd, CUDA runtime (streams/events/graphs), a stream-ordered caching allocator with diagnostics, and a stable C ABI for dynamically loaded operator plugins. We view this release as a milestone for AI-assisted software engineering: it shows coding agents can generate a coherent deep learning runtime spanning language bindings down to CUDA memory management, validated primarily by builds and tests. We describe the architecture, summarize the workflow used to produce and validate the system, and evaluate the artifact. We report repository scale and test-suite composition, and summarize reproducible microbenchmarks from an accompanying AI-generated kernel suite, including fused attention versus PyTorch SDPA/FlashAttention. We also report end-to-end training sanity checks on 3 small workloads (sequence reversal, ViT, miniGPT) on NVIDIA H100 (Hopper, SM90) and Blackwell-class GPUs; multi-GPU results are Blackwell-only and use an optional CUTLASS-based ring-allreduce plugin gated on CUDA 13+ and sm103a toolchain support. Finally, we discuss failure modes in generated system software, including a "Frankenstein" composition effect where locally correct subsystems interact to yield globally suboptimal performance.




Abstract:Transformers, driven by attention mechanisms, form the foundation of large language models (LLMs). As these models scale up, efficient GPU attention kernels become essential for high-throughput and low-latency inference. Diverse LLM applications demand flexible and high-performance attention solutions. We present FlashInfer: a customizable and efficient attention engine for LLM serving. FlashInfer tackles KV-cache storage heterogeneity using block-sparse format and composable formats to optimize memory access and reduce redundancy. It also offers a customizable attention template, enabling adaptation to various settings through Just-In-Time (JIT) compilation. Additionally, FlashInfer's load-balanced scheduling algorithm adjusts to dynamism of user requests while maintaining compatibility with CUDAGraph which requires static configuration. FlashInfer have been integrated into leading LLM serving frameworks like SGLang, vLLM and MLC-Engine. Comprehensive kernel-level and end-to-end evaluations demonstrate FlashInfer's ability to significantly boost kernel performance across diverse inference scenarios: compared to state-of-the-art LLM serving solutions, FlashInfer achieve 29-69% inter-token-latency reduction compared to compiler backends for LLM serving benchmark, 28-30% latency reduction for long-context inference, and 13-17% speedup for LLM serving with parallel generation.




Abstract:We present JaxPP, a system for efficiently scaling the training of large deep learning models with flexible pipeline parallelism. We introduce a seamless programming model that allows implementing user-defined pipeline schedules for gradient accumulation. JaxPP automatically distributes tasks, corresponding to pipeline stages, over a cluster of nodes and automatically infers the communication among them. We implement a MPMD runtime for asynchronous execution of SPMD tasks. The pipeline parallelism implementation of JaxPP improves hardware utilization by up to $1.11\times$ with respect to the best performing SPMD configuration.




Abstract:PyPM is a Python-based domain specific language (DSL) for building rewrite-based optimization passes on machine learning computation graphs. Users define individual optimizations by writing (a) patterns that match subgraphs of a computation graph and (b) corresponding rules which replace a matched subgraph with an optimized kernel. PyPM is distinguished from the many other DSLs for defining rewriting passes by its complex and novel pattern language which borrows concepts from logic programming. PyPM patterns can be recursive, nondeterminstic, and can require checking domain-specific constraints such as the shapes of tensors. The PyPM implementation is thus similarly complicated, consisting of thousands of lines of C++ code. In this paper, we present our work on building PyPM, as well as formalizing and distilling and this complexity to an understandable mathematical core. We have developed a formal core calculus expressing the main operations of the PyPM pattern language. We define both a declarative semantics - describing which patterns match which terms - and an algorithmic semantics - an idealized version of the PyPM pattern interpreter - and prove their equivalence. The development is fully mechanized in the Coq proof assistant.