Abstract:Digital versions of real-world text documents often suffer from issues like environmental corrosion of the original document, low-quality scanning, or human interference. Existing document restoration and inpainting methods typically struggle with generalizing to unseen document styles and handling high-resolution images. To address these challenges, we introduce TextDoctor, a novel unified document image inpainting method. Inspired by human reading behavior, TextDoctor restores fundamental text elements from patches and then applies diffusion models to entire document images instead of training models on specific document types. To handle varying text sizes and avoid out-of-memory issues, common in high-resolution documents, we propose using structure pyramid prediction and patch pyramid diffusion models. These techniques leverage multiscale inputs and pyramid patches to enhance the quality of inpainting both globally and locally. Extensive qualitative and quantitative experiments on seven public datasets validated that TextDoctor outperforms state-of-the-art methods in restoring various types of high-resolution document images.
Abstract:Several constrained optimization problems have been adequately solved over the years thanks to advances in the metaheuristics area. In this paper, we evaluate a novel self-adaptive and auto-constructive metaheuristic called Drone Squadron Optimization (DSO) in solving constrained engineering design problems. This paper evaluates DSO with death penalty on three widely tested engineering design problems. Results show that the proposed approach is competitive with some very popular metaheuristics.
Abstract:Traditional Linear Genetic Programming (LGP) algorithms are based only on the selection mechanism to guide the search. Genetic operators combine or mutate random portions of the individuals, without knowing if the result will lead to a fitter individual. Probabilistic Model Building Genetic Programming (PMB-GP) methods were proposed to overcome this issue through a probability model that captures the structure of the fit individuals and use it to sample new individuals. This work proposes the use of LGP with a Stochastic Context-Free Grammar (SCFG), that has a probability distribution that is updated according to selected individuals. We proposed a method for adapting the grammar into the linear representation of LGP. Tests performed with the proposed probabilistic method, and with two hybrid approaches, on several symbolic regression benchmark problems show that the results are statistically better than the obtained by the traditional LGP.
Abstract:This paper proposes Drone Squadron Optimization, a new self-adaptive metaheuristic for global numerical optimization which is updated online by a hyper-heuristic. DSO is an artifact-inspired technique, as opposed to many algorithms used nowadays, which are nature-inspired. DSO is very flexible because it is not related to behaviors or natural phenomena. DSO has two core parts: the semi-autonomous drones that fly over a landscape to explore, and the Command Center that processes the retrieved data and updates the drones' firmware whenever necessary. The self-adaptive aspect of DSO in this work is the perturbation/movement scheme, which is the procedure used to generate target coordinates. This procedure is evolved by the Command Center during the global optimization process in order to adapt DSO to the search landscape. DSO was evaluated on a set of widely employed benchmark functions. The statistical analysis of the results shows that the proposed method is competitive with the other methods in the comparison, the performance is promising, but several future improvements are planned.