Abstract:The rapid advancements in autonomous vehicle software present both opportunities and challenges, especially in enhancing road safety. The primary objective of autonomous vehicles is to reduce accident rates through improved safety measures. However, the integration of new algorithms into the autonomous vehicle, such as Artificial Intelligence methods, raises concerns about the compliance with established safety regulations. This paper introduces a novel software architecture based on behavior trees, aligned with established standards and designed to supervise vehicle functional safety in real time. It specifically addresses the integration of algorithms into industrial road vehicles, adhering to the ISO 26262. The proposed supervision methodology involves the detection of hazards and compliance with functional and technical safety requirements when a hazard arises. This methodology, implemented in this study in a Renault M\'egane (currently at SAE level 3 of automation), not only guarantees compliance with safety standards, but also paves the way for safer and more reliable autonomous driving technologies.
Abstract:In this paper, a multi-modal 360$^{\circ}$ framework for 3D object detection and tracking for autonomous vehicles is presented. The process is divided into four main stages. First, images are fed into a CNN network to obtain instance segmentation of the surrounding road participants. Second, LiDAR-to-image association is performed for the estimated mask proposals. Then, the isolated points of every object are processed by a PointNet ensemble to compute their corresponding 3D bounding boxes and poses. Lastly, a tracking stage based on Unscented Kalman Filter is used to track the agents along time. The solution, based on a novel sensor fusion configuration, provides accurate and reliable road environment detection. A wide variety of tests of the system, deployed in an autonomous vehicle, have successfully assessed the suitability of the proposed perception stack in a real autonomous driving application.