Abstract:Security controls are mechanisms or policies designed for cloud based services to reduce risk, protect information, and ensure compliance with security regulations. The development of security controls is traditionally a labor-intensive and time-consuming process. This paper explores the use of Generative AI to accelerate the generation of security controls. We specifically focus on generating Gherkin codes which are the domain-specific language used to define the behavior of security controls in a structured and understandable format. By leveraging large language models and in-context learning, we propose a structured framework that reduces the time required for developing security controls from 2-3 days to less than one minute. Our approach integrates detailed task descriptions, step-by-step instructions, and retrieval-augmented generation to enhance the accuracy and efficiency of the generated Gherkin code. Initial evaluations on AWS cloud services demonstrate promising results, indicating that GenAI can effectively streamline the security control development process, thus providing a robust and dynamic safeguard for cloud-based infrastructures.
Abstract:A major problem with Active Learning (AL) is high training costs since models are typically retrained from scratch after every query round. We start by demonstrating that standard AL on neural networks with warm starting fails, both to accelerate training and to avoid catastrophic forgetting when using fine-tuning over AL query rounds. We then develop a new class of techniques, circumventing this problem, by biasing further training towards previously labeled sets. We accomplish this by employing existing, and developing novel, replay-based Continual Learning (CL) algorithms that are effective at quickly learning the new without forgetting the old, especially when data comes from an evolving distribution. We call this paradigm Continual Active Learning (CAL). We show CAL achieves significant speedups using a plethora of replay schemes that use model distillation and that select diverse, uncertain points from the history. We conduct experiments across many data domains, including natural language, vision, medical imaging, and computational biology, each with different neural architectures and dataset sizes. CAL consistently provides a 3x reduction in training time, while retaining performance.