Abstract:Semiconductors, crucial to modern electronics, are generally under-researched in foundational models. It highlights the need for research to enhance the semiconductor device technology portfolio and aid in high-end device fabrication. In this paper, we introduce sLAVA, a small-scale vision-language assistant tailored for semiconductor manufacturing, with a focus on electron microscopy image analysis. It addresses challenges of data scarcity and acquiring high-quality, expert-annotated data. We employ a teacher-student paradigm, using a foundational vision language model like GPT-4 as a teacher to create instruction-following multimodal data for customizing the student model, sLAVA, for electron microscopic image analysis tasks on consumer hardware with limited budgets. Our approach allows enterprises to further fine-tune the proposed framework with their proprietary data securely within their own infrastructure, protecting intellectual property. Rigorous experiments validate that our framework surpasses traditional methods, handles data shifts, and enables high-throughput screening.
Abstract:In the field of chemistry, the objective is to create novel molecules with desired properties, facilitating accurate property predictions for applications such as material design and drug screening. However, existing graph deep learning methods face limitations that curb their expressive power. To address this, we explore the integration of vast molecular domain knowledge from Large Language Models (LLMs) with the complementary strengths of Graph Neural Networks (GNNs) to enhance performance in property prediction tasks. We introduce a Multi-Modal Fusion (MMF) framework that synergistically harnesses the analytical prowess of GNNs and the linguistic generative and predictive abilities of LLMs, thereby improving accuracy and robustness in predicting molecular properties. Our framework combines the effectiveness of GNNs in modeling graph-structured data with the zero-shot and few-shot learning capabilities of LLMs, enabling improved predictions while reducing the risk of overfitting. Furthermore, our approach effectively addresses distributional shifts, a common challenge in real-world applications, and showcases the efficacy of learning cross-modal representations, surpassing state-of-the-art baselines on benchmark datasets for property prediction tasks.
Abstract:Spatio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management. However, existing methods are limited by their ability to handle large, complex datasets. To overcome this limitation, we introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods. We augment traditional methods with dynamic prompting and a grouped-query, multi-head attention mechanism to more effectively capture both intra-series and inter-series dependencies in evolving nonlinear time series data. In addition, we facilitate on-premises customization by fine-tuning smaller open-source LMs for time series trend analysis utilizing descriptions generated by open-source large LMs on consumer-grade hardware using Low-Rank Adaptation with Activation Memory Reduction (LoRA-AMR) technique to reduce computational overhead and activation storage memory demands while preserving inference latency. We combine language model processing for time series trend analysis with traditional time series representation learning method for cross-modal integration, achieving robust and accurate forecasts. The framework effectiveness is demonstrated through extensive experiments on various real-world datasets, outperforming existing methods by significant margins in terms of forecast accuracy.
Abstract:Characterizing materials with electron micrographs is a crucial task in fields such as semiconductors and quantum materials. The complex hierarchical structure of micrographs often poses challenges for traditional classification methods. In this study, we propose an innovative backbone architecture for analyzing electron micrographs. We create multi-modal representations of the micrographs by tokenizing them into patch sequences and, additionally, representing them as vision graphs, commonly referred to as patch attributed graphs. We introduce the Hierarchical Network Fusion (HNF), a multi-layered network structure architecture that facilitates information exchange between the multi-modal representations and knowledge integration across different patch resolutions. Furthermore, we leverage large language models (LLMs) to generate detailed technical descriptions of nanomaterials as auxiliary information to assist in the downstream task. We utilize a cross-modal attention mechanism for knowledge fusion across cross-domain representations(both image-based and linguistic insights) to predict the nanomaterial category. This multi-faceted approach promises a more comprehensive and accurate representation and classification of micrographs for nanomaterial identification. Our framework outperforms traditional methods, overcoming challenges posed by distributional shifts, and facilitating high-throughput screening.
Abstract:Spatio-temporal forecasting is crucial in transportation, logistics, and supply chain management. However, current methods struggle with large, complex datasets. We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models for time series trend analysis. This approach utilizes a mixture of experts (MoE) architecture with parameter-efficient fine-tuning (PEFT) methods, tailored for consumer hardware to scale up AI solutions in low resource settings while balancing performance and latency tradeoffs. Additionally, our approach leverages related past experiences for similar input time series to efficiently handle both intra-series and inter-series dependencies of non-stationary data with a time-then-space modeling approach, using grouped-query attention, while mitigating the limitations of traditional forecasting techniques in handling distributional shifts. Our approach models predictive uncertainty to improve decision-making. Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security. Extensive experiments on various real-world datasets demonstrate that our framework provides robust and accurate forecasts, significantly outperforming existing methods.
Abstract:Characterizing materials using electron micrographs is crucial in areas such as semiconductors and quantum materials. Traditional classification methods falter due to the intricatestructures of these micrographs. This study introduces an innovative architecture that leverages the generative capabilities of zero-shot prompting in Large Language Models (LLMs) such as GPT-4(language only), the predictive ability of few-shot (in-context) learning in Large Multimodal Models (LMMs) such as GPT-4(V)ision, and fuses knowledge across image based and linguistic insights for accurate nanomaterial category prediction. This comprehensive approach aims to provide a robust solution for the automated nanomaterial identification task in semiconductor manufacturing, blending performance, efficiency, and interpretability. Our method surpasses conventional approaches, offering precise nanomaterial identification and facilitating high-throughput screening.
Abstract:We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries. The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator, managing an action generator and instruction-tuned small-scale language models (expert models). The action generator decomposes complex problems into sub-tasks and identifies suitable expert models to execute each, delivering precise solutions for multi-step problem-solving. Key techniques include advanced knowledge modeling using property graphs for improved information retrieval, facilitating more accurate and contextually relevant solutions. Additionally, the framework utilizes a teacher-student transfer-learning approach with GPT-4 (Omni) to fine-tune the action generator and expert models for domain adaptation, alongside an iterative problem-solving mechanism with sophisticated error handling. Custom datasets were developed to evaluate the framework against leading proprietary language models on various engineering tasks. The results demonstrate the framework effectiveness in automating calculations, accelerating prototyping, and providing AI-augmented decision support for industrial processes, marking a significant advancement in process engineering capabilities.
Abstract:Semiconductor imaging and analysis are critical yet understudied in deep learning, limiting our ability for precise control and optimization in semiconductor manufacturing. We introduce a small-scale multimodal framework for analyzing semiconductor electron microscopy images (MAEMI) through vision-language instruction tuning. We generate a customized instruction-following dataset using large multimodal models on microscopic image analysis. We perform knowledge transfer from larger to smaller models through knowledge distillation, resulting in improved accuracy of smaller models on visual question answering (VQA) tasks. This approach eliminates the need for expensive, human expert-annotated datasets for microscopic image analysis tasks. Enterprises can further finetune MAEMI on their intellectual data, enhancing privacy and performance on low-cost consumer hardware. Our experiments show that MAEMI outperforms traditional methods, adapts to data distribution shifts, and supports high-throughput screening.
Abstract:Accurately predicting the behavior of complex dynamical systems, characterized by high-dimensional multivariate time series(MTS) in interconnected sensor networks, is crucial for informed decision-making in various applications to minimize risk. While graph forecasting networks(GFNs) are ideal for forecasting MTS data that exhibit spatio-temporal dependencies, prior works rely solely on the domain-specific knowledge of time-series variables inter-relationships to model the nonlinear dynamics, neglecting inherent relational structural dependencies among the variables within the MTS data. In contrast, contemporary works infer relational structures from MTS data but neglect domain-specific knowledge. The proposed hybrid architecture addresses these limitations by combining both domain-specific knowledge and implicit knowledge of the relational structure underlying the MTS data using Knowledge-Based Compositional Generalization. The hybrid architecture shows promising results on multiple benchmark datasets, outperforming state-of-the-art forecasting methods. Additionally, the architecture models the time varying uncertainty of multi-horizon forecasts.
Abstract:Forecasting the behaviour of complex dynamical systems such as interconnected sensor networks characterized by high-dimensional multivariate time series(MTS) is of paramount importance for making informed decisions and planning for the future in a broad spectrum of applications. Graph forecasting networks(GFNs) are well-suited for forecasting MTS data that exhibit spatio-temporal dependencies. However, most prior works of GFN-based methods on MTS forecasting rely on domain-expertise to model the nonlinear dynamics of the system, but neglect the potential to leverage the inherent relational-structural dependencies among time series variables underlying MTS data. On the other hand, contemporary works attempt to infer the relational structure of the complex dependencies between the variables and simultaneously learn the nonlinear dynamics of the interconnected system but neglect the possibility of incorporating domain-specific prior knowledge to improve forecast accuracy. To this end, we propose a hybrid architecture that combines explicit prior knowledge with implicit knowledge of the relational structure within the MTS data. It jointly learns intra-series temporal dependencies and inter-series spatial dependencies by encoding time-conditioned structural spatio-temporal inductive biases to provide more accurate and reliable forecasts. It also models the time-varying uncertainty of the multi-horizon forecasts to support decision-making by providing estimates of prediction uncertainty. The proposed architecture has shown promising results on multiple benchmark datasets and outperforms state-of-the-art forecasting methods by a significant margin. We report and discuss the ablation studies to validate our forecasting architecture.