Characterizing materials using electron micrographs is crucial in areas such as semiconductors and quantum materials. Traditional classification methods falter due to the intricatestructures of these micrographs. This study introduces an innovative architecture that leverages the generative capabilities of zero-shot prompting in Large Language Models (LLMs) such as GPT-4(language only), the predictive ability of few-shot (in-context) learning in Large Multimodal Models (LMMs) such as GPT-4(V)ision, and fuses knowledge across image based and linguistic insights for accurate nanomaterial category prediction. This comprehensive approach aims to provide a robust solution for the automated nanomaterial identification task in semiconductor manufacturing, blending performance, efficiency, and interpretability. Our method surpasses conventional approaches, offering precise nanomaterial identification and facilitating high-throughput screening.