Abstract:"A common decision made by people, whether healthy or with health conditions, is choosing meals like breakfast, lunch, and dinner, comprising combinations of foods for appetizer, main course, side dishes, desserts, and beverages. Often, this decision involves tradeoffs between nutritious choices (e.g., salt and sugar levels, nutrition content) and convenience (e.g., cost and accessibility, cuisine type, food source type). We present a data-driven solution for meal recommendations that considers customizable meal configurations and time horizons. This solution balances user preferences while accounting for food constituents and cooking processes. Our contributions include introducing goodness measures, a recipe conversion method from text to the recently introduced multimodal rich recipe representation (R3) format, learning methods using contextual bandits that show promising preliminary results, and the prototype, usage-inspired, BEACON system."
Abstract:A common, yet regular, decision made by people, whether healthy or with any health condition, is to decide what to have in meals like breakfast, lunch, and dinner, consisting of a combination of foods for appetizer, main course, side dishes, desserts, and beverages. However, often this decision is seen as a trade-off between nutritious choices (e.g., low salt and sugar) or convenience (e.g., inexpensive, fast to prepare/obtain, taste better). In this preliminary work, we present a data-driven approach for the novel meal recommendation problem that can explore and balance choices for both considerations while also reasoning about a food's constituents and cooking process. Beyond the problem formulation, our contributions also include a goodness measure, a recipe conversion method from text to the recently introduced multimodal rich recipe representation (R3) format, and learning methods using contextual bandits that show promising results.