Abstract:Image similarity metrics play an important role in computer vision applications, as they are used in image processing, computer vision and machine learning. Furthermore, those metrics enable tasks such as image retrieval, object recognition and quality assessment, essential in fields like healthcare, astronomy and surveillance. Existing metrics, such as PSNR, MSE, SSIM, ISSM and FSIM, often face limitations in terms of either speed, complexity or sensitivity to small changes in images. To address these challenges, a novel image similarity metric, namely CSIM, that combines real-time while being sensitive to subtle image variations is investigated in this paper. The novel metric uses Gaussian Copula from probability theory to transform an image into vectors of pixel distribution associated to local image patches. These vectors contain, in addition to intensities and pixel positions, information on the dependencies between pixel values, capturing the structural relationships within the image. By leveraging the properties of Copulas, CSIM effectively models the joint distribution of pixel intensities, enabling a more nuanced comparison of image patches making it more sensitive to local changes compared to other metrics. Experimental results demonstrate that CSIM outperforms existing similarity metrics in various image distortion scenarios, including noise, compression artifacts and blur. The metric's ability to detect subtle differences makes it suitable for applications requiring high precision, such as medical imaging, where the detection of minor anomalies can be of a high importance. The results obtained in this work can be reproduced from this Github repository: https://github.com/safouaneelg/copulasimilarity.
Abstract:Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics. However, analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available. Furthermore, the analysis of EEMs is difficult due to their high dimensionality and overlapping spectral features. This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges. Thanks to specialised feature engineering of the neural networks described in this work, we are now able to provide deeper insights into the physico-chemical processes underlying the data. The proposed approach is demonstrated through the analysis of the oxidation process in extra virgin olive oil (EVOO) during ageing, showing its effectiveness in predicting quality indicators and identifying the spectral bands, and thus the molecules involved in the process. This work describes a significantly innovative approach in the use of deep learning for spectroscopy, transforming it from a black box into a tool for understanding complex biological and chemical processes.
Abstract:Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics. However, analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due mainly to the typically small and sparse datasets available. Furthermore, the analysis of EEMs is difficult due to their high dimensionality and overlapping spectral features. This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges. Thanks to specialised feature engineering of the neural networks described in this work, we are now able to provide deeper and meaningful insights into the physico-chemical processes underlying the data. The proposed approach is demonstrated through the analysis of the oxidation process in extra virgin olive oil (EVOO), showing its effectiveness in predicting quality indicators and identifying relevant spectral bands. This work describes significantly innovative results in the use of deep learning for spectroscopy, transforming it from a black box into a tool for understanding complex biological and chemical processes.
Abstract:Self-rewarding have emerged recently as a powerful tool in the field of Natural Language Processing (NLP), allowing language models to generate high-quality relevant responses by providing their own rewards during training. This innovative technique addresses the limitations of other methods that rely on human preferences. In this paper, we build upon the concept of self-rewarding models and introduce its vision equivalent for Text-to-Image generative AI models. This approach works by fine-tuning diffusion model on a self-generated self-judged dataset, making the fine-tuning more automated and with better data quality. The proposed mechanism makes use of other pre-trained models such as vocabulary based-object detection, image captioning and is conditioned by the a set of object for which the user might need to improve generated data quality. The approach has been implemented, fine-tuned and evaluated on stable diffusion and has led to a performance that has been evaluated to be at least 60\% better than existing commercial and research Text-to-image models. Additionally, the built self-rewarding mechanism allowed a fully automated generation of images, while increasing the visual quality of the generated images and also more efficient following of prompt instructions. The code used in this work is freely available on https://github.com/safouaneelg/SRT2I.
Abstract:Object detection in remotely sensed satellite pictures is fundamental in many fields such as biophysical, and environmental monitoring. While deep learning algorithms are constantly evolving, they have been mostly implemented and tested on popular ground-based taken photos. This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery. Using the large HRPlanesV2 dataset, together with a rigorous validation with the GDIT dataset, this research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch. This exhaustive training and validation study reveal YOLOv5 as the preeminent model for the specific case of identifying airplanes from remote sensing data, showcasing high precision and adaptability across diverse imaging conditions. This research highlight the nuanced performance landscapes of these algorithms, with YOLOv5 emerging as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores. The findings described here underscore the fundamental role of algorithm selection aligned with the specific demands of satellite imagery analysis and extend a comprehensive framework to evaluate model efficacy. The benchmark toolkit and codes, available via https://github.com/toelt-llc/FlightScope_Bench, aims to further exploration and innovation in the realm of remote sensing object detection, paving the way for improved analytical methodologies in satellite imagery applications.
Abstract:In the realm of computer vision, the integration of advanced techniques into the processing of RGB-D camera inputs poses a significant challenge, given the inherent complexities arising from diverse environmental conditions and varying object appearances. Therefore, this paper introduces FusionVision, an exhaustive pipeline adapted for the robust 3D segmentation of objects in RGB-D imagery. Traditional computer vision systems face limitations in simultaneously capturing precise object boundaries and achieving high-precision object detection on depth map as they are mainly proposed for RGB cameras. To address this challenge, FusionVision adopts an integrated approach by merging state-of-the-art object detection techniques, with advanced instance segmentation methods. The integration of these components enables a holistic (unified analysis of information obtained from both color \textit{RGB} and depth \textit{D} channels) interpretation of RGB-D data, facilitating the extraction of comprehensive and accurate object information. The proposed FusionVision pipeline employs YOLO for identifying objects within the RGB image domain. Subsequently, FastSAM, an innovative semantic segmentation model, is applied to delineate object boundaries, yielding refined segmentation masks. The synergy between these components and their integration into 3D scene understanding ensures a cohesive fusion of object detection and segmentation, enhancing overall precision in 3D object segmentation. The code and pre-trained models are publicly available at https://github.com/safouaneelg/FusionVision/.
Abstract:This paper presents an annotated dataset of brain MRI images designed to advance the field of brain symmetry study. Magnetic resonance imaging (MRI) has gained interest in analyzing brain symmetry in neonatal infants, and challenges remain due to the vast size differences between fetal and adult brains. Classification methods for brain structural MRI use scales and visual cues to assess hemisphere symmetry, which can help diagnose neonatal patients by comparing hemispheres and anatomical regions of interest in the brain. Using the Developing Human Connectome Project dataset, this work presents a dataset comprising cerebral images extracted as slices across selected portions of interest for clinical evaluation . All the extracted images are annotated with the brain's midline. All the extracted images are annotated with the brain's midline. From the assumption that a decrease in symmetry is directly related to possible clinical pathologies, the dataset can contribute to a more precise diagnosis because it can be used to train deep learning model application in neonatal cerebral MRI anomaly detection from postnatal infant scans thanks to computer vision. Such models learn to identify and classify anomalies by identifying potential asymmetrical patterns in medical MRI images. Furthermore, this dataset can contribute to the research and development of methods using the relative symmetry of the two brain hemispheres for crucial diagnosis and treatment planning.
Abstract:This work systematically investigates the oxidation of extra virgin olive oil (EVOO) under accelerated storage conditions with UV absorption and total fluorescence spectroscopy. With the large amount of data collected, it proposes a method to monitor the oil's quality based on machine learning applied to highly-aggregated data. EVOO is a high-quality vegetable oil that has earned worldwide reputation for its numerous health benefits and excellent taste. Despite its outstanding quality, EVOO degrades over time owing to oxidation, which can affect both its health qualities and flavour. Therefore, it is highly relevant to quantify the effects of oxidation on EVOO and develop methods to assess it that can be easily implemented under field conditions, rather than in specialized laboratories. The following study demonstrates that fluorescence spectroscopy has the capability to monitor the effect of oxidation and assess the quality of EVOO, even when the data are highly aggregated. It shows that complex laboratory equipment is not necessary to exploit fluorescence spectroscopy using the proposed method and that cost-effective solutions, which can be used in-field by non-scientists, could provide an easily-accessible assessment of the quality of EVOO.
Abstract:This dataset encompasses fluorescence spectra and chemical parameters of 24 olive oil samples from the 2019-2020 harvest provided by the producer Conde de Benalua, Granada, Spain. The oils are characterized by different qualities: 10 extra virgin olive oil (EVOO), 8 virgin olive oil (VOO), and 6 lampante olive oil (LOO) samples. For each sample, the dataset includes fluorescence spectra obtained with two excitation wavelengths, oil quality, and five chemical parameters necessary for the quality assessment of olive oil. The fluorescence spectra were obtained by exciting the samples at 365 nm and 395 nm under identical conditions. The dataset includes the values of the following chemical parameters for each olive oil sample: acidity, peroxide value, K270, K232, ethyl esters, and the quality of the samples (EVOO, VOO, or LOO). The dataset offers a unique possibility for researchers in food technology to develop machine learning models based on fluorescence data for the quality assessment of olive oil due to the availability of both spectroscopic and chemical data. The dataset can be used, for example, to predict one or multiple chemical parameters or to classify samples based on their quality from fluorescence spectra.
Abstract:Training neural networks means solving a high-dimensional optimization problem. Normally the goal is to minimize a loss function that depends on what is called the network function, or in other words the function that gives the network output given a certain input. This function depends on a large number of parameters, also known as weights, that depends on the network architecture. In general the goal of this optimization problem is to find the global minimum of the network function. In this paper it is discussed how due to how neural networks are designed, the neural network function present a very large symmetry in the parameter space. This work shows how the neural network function has a number of equivalent minima, in other words minima that give the same value for the loss function and the same exact output, that grows factorially with the number of neurons in each layer for feed forward neural network or with the number of filters in a convolutional neural networks. When the number of neurons and layers is large, the number of equivalent minima grows extremely fast. This will have of course consequences for the study of how neural networks converges to minima during training. This results is known, but in this paper for the first time a proper mathematical discussion is presented and an estimate of the number of equivalent minima is derived.