Abstract:The characterization of an exoplanet's interior is an inverse problem, which requires statistical methods such as Bayesian inference in order to be solved. Current methods employ Markov Chain Monte Carlo (MCMC) sampling to infer the posterior probability of planetary structure parameters for a given exoplanet. These methods are time consuming since they require the calculation of a large number of planetary structure models. To speed up the inference process when characterizing an exoplanet, we propose to use conditional invertible neural networks (cINNs) to calculate the posterior probability of the internal structure parameters. cINNs are a special type of neural network which excel in solving inverse problems. We constructed a cINN using FrEIA, which was then trained on a database of $5.6\cdot 10^6$ internal structure models to recover the inverse mapping between internal structure parameters and observable features (i.e., planetary mass, planetary radius and composition of the host star). The cINN method was compared to a Metropolis-Hastings MCMC. For that we repeated the characterization of the exoplanet K2-111 b, using both the MCMC method and the trained cINN. We show that the inferred posterior probability of the internal structure parameters from both methods are very similar, with the biggest differences seen in the exoplanet's water content. Thus cINNs are a possible alternative to the standard time-consuming sampling methods. Indeed, using cINNs allows for orders of magnitude faster inference of an exoplanet's composition than what is possible using an MCMC method, however, it still requires the computation of a large database of internal structures to train the cINN. Since this database is only computed once, we found that using a cINN is more efficient than an MCMC, when more than 10 exoplanets are characterized using the same cINN.
Abstract:Segmentation is often an essential intermediate step in image analysis. A volume segmentation characterizes the underlying volume image in terms of geometric information--segments, faces between segments, curves in which several faces meet--as well as a topology on these objects. Existing algorithms encode this information in designated data structures, but require that these data structures fit entirely in Random Access Memory (RAM). Today, 3D images with several billion voxels are acquired, e.g. in structural neurobiology. Since these large volumes can no longer be processed with existing methods, we present a new algorithm which performs geometry and topology extraction with a runtime linear in the number of voxels and log-linear in the number of faces and curves. The parallelizable algorithm proceeds in a block-wise fashion and constructs a consistent representation of the entire volume image on the hard drive, making the structure of very large volume segmentations accessible to image analysis. The parallelized C++ source code, free command line tools and MATLAB mex files are avilable from http://hci.iwr.uni-heidelberg.de/software.php