Abstract:We present \textbf{H}ybrid-\textbf{A}utoregressive \textbf{IN}ference Tr\textbf{AN}sducers (HAINAN), a novel architecture for speech recognition that extends the Token-and-Duration Transducer (TDT) model. Trained with randomly masked predictor network outputs, HAINAN supports both autoregressive inference with all network components and non-autoregressive inference without the predictor. Additionally, we propose a novel semi-autoregressive inference paradigm that first generates an initial hypothesis using non-autoregressive inference, followed by refinement steps where each token prediction is regenerated using parallelized autoregression on the initial hypothesis. Experiments on multiple datasets across different languages demonstrate that HAINAN achieves efficiency parity with CTC in non-autoregressive mode and with TDT in autoregressive mode. In terms of accuracy, autoregressive HAINAN outperforms TDT and RNN-T, while non-autoregressive HAINAN significantly outperforms CTC. Semi-autoregressive inference further enhances the model's accuracy with minimal computational overhead, and even outperforms TDT results in some cases. These results highlight HAINAN's flexibility in balancing accuracy and speed, positioning it as a strong candidate for real-world speech recognition applications.
Abstract:Text normalization - the conversion of text from written to spoken form - is traditionally assumed to be an ill-formed task for language models. In this work, we argue otherwise. We empirically show the capacity of Large-Language Models (LLM) for text normalization in few-shot scenarios. Combining self-consistency reasoning with linguistic-informed prompt engineering, we find LLM based text normalization to achieve error rates around 40\% lower than top normalization systems. Further, upon error analysis, we note key limitations in the conventional design of text normalization tasks. We create a new taxonomy of text normalization errors and apply it to results from GPT-3.5-Turbo and GPT-4.0. Through this new framework, we can identify strengths and weaknesses of GPT-based TN, opening opportunities for future work.
Abstract:In this paper, we extend previous self-supervised approaches for language identification by experimenting with Conformer based architecture in a multilingual pre-training paradigm. We find that pre-trained speech models optimally encode language discriminatory information in lower layers. Further, we demonstrate that the embeddings obtained from these layers are significantly robust to classify unseen languages and different acoustic environments without additional training. After fine-tuning a pre-trained Conformer model on the VoxLingua107 dataset, we achieve results similar to current state-of-the-art systems for language identification. More, our model accomplishes this with 5x less parameters. We open-source the model through the NVIDIA NeMo toolkit.