Abstract:This paper presents a novel Collaborative Cyberattack Detection (CCD) system aimed at enhancing the security of blockchain-based data-sharing networks by addressing the complex challenges associated with noise addition in federated learning models. Leveraging the theoretical principles of differential privacy, our approach strategically integrates noise into trained sub-models before reconstructing the global model through transmission. We systematically explore the effects of various noise types, i.e., Gaussian, Laplace, and Moment Accountant, on key performance metrics, including attack detection accuracy, deep learning model convergence time, and the overall runtime of global model generation. Our findings reveal the intricate trade-offs between ensuring data privacy and maintaining system performance, offering valuable insights into optimizing these parameters for diverse CCD environments. Through extensive simulations, we provide actionable recommendations for achieving an optimal balance between data protection and system efficiency, contributing to the advancement of secure and reliable blockchain networks.
Abstract:This article aims to study intrusion attacks and then develop a novel cyberattack detection framework for blockchain networks. Specifically, we first design and implement a blockchain network in our laboratory. This blockchain network will serve two purposes, i.e., generate the real traffic data (including both normal data and attack data) for our learning models and implement real-time experiments to evaluate the performance of our proposed intrusion detection framework. To the best of our knowledge, this is the first dataset that is synthesized in a laboratory for cyberattacks in a blockchain network. We then propose a novel collaborative learning model that allows efficient deployment in the blockchain network to detect attacks. The main idea of the proposed learning model is to enable blockchain nodes to actively collect data, share the knowledge learned from its data, and then exchange the knowledge with other blockchain nodes in the network. In this way, we can not only leverage the knowledge from all the nodes in the network but also do not need to gather all raw data for training at a centralized node like conventional centralized learning solutions. Such a framework can also avoid the risk of exposing local data's privacy as well as the excessive network overhead/congestion. Both intensive simulations and real-time experiments clearly show that our proposed collaborative learning-based intrusion detection framework can achieve an accuracy of up to 97.7% in detecting attacks.
Abstract:Federated Learning (FL) has recently become an effective approach for cyberattack detection systems, especially in Internet-of-Things (IoT) networks. By distributing the learning process across IoT gateways, FL can improve learning efficiency, reduce communication overheads and enhance privacy for cyberattack detection systems. Challenges in implementation of FL in such systems include unavailability of labeled data and dissimilarity of data features in different IoT networks. In this paper, we propose a novel collaborative learning framework that leverages Transfer Learning (TL) to overcome these challenges. Particularly, we develop a novel collaborative learning approach that enables a target network with unlabeled data to effectively and quickly learn knowledge from a source network that possesses abundant labeled data. It is important that the state-of-the-art studies require the participated datasets of networks to have the same features, thus limiting the efficiency, flexibility as well as scalability of intrusion detection systems. However, our proposed framework can address these problems by exchanging the learning knowledge among various deep learning models, even when their datasets have different features. Extensive experiments on recent real-world cybersecurity datasets show that the proposed framework can improve more than 40% as compared to the state-of-the-art deep learning based approaches.