Abstract:Diet is an important aspect of our health. Good dietary habits can contribute to the prevention of many diseases and improve the overall quality of life. To better understand the relationship between diet and health, image-based dietary assessment systems have been developed to collect dietary information. We introduce the Automatic Ingestion Monitor (AIM), a device that can be attached to one's eye glasses. It provides an automated hands-free approach to capture eating scene images. While AIM has several advantages, images captured by the AIM are sometimes blurry. Blurry images can significantly degrade the performance of food image analysis such as food detection. In this paper, we propose an approach to pre-process images collected by the AIM imaging sensor by rejecting extremely blurry images to improve the performance of food detection.
Abstract:A resilient and robust positioning, navigation, and timing (PNT) system is a necessity for the navigation of autonomous vehicles (AVs). Global Navigation Satelite System (GNSS) provides satellite-based PNT services. However, a spoofer can temper an authentic GNSS signal and could transmit wrong position information to an AV. Therefore, a GNSS must have the capability of real-time detection and feedback-correction of spoofing attacks related to PNT receivers, whereby it will help the end-user (autonomous vehicle in this case) to navigate safely if it falls into any compromises. This paper aims to develop a deep reinforcement learning (RL)-based turn-by-turn spoofing attack detection using low-cost in-vehicle sensor data. We have utilized Honda Driving Dataset to create attack and non-attack datasets, develop a deep RL model, and evaluate the performance of the RL-based attack detection model. We find that the accuracy of the RL model ranges from 99.99% to 100%, and the recall value is 100%. However, the precision ranges from 93.44% to 100%, and the f1 score ranges from 96.61% to 100%. Overall, the analyses reveal that the RL model is effective in turn-by-turn spoofing attack detection.