Abstract:We introduce Facial Expression Category Discovery (FECD), a novel task in the domain of open-world facial expression recognition (O-FER). While Generalized Category Discovery (GCD) has been explored in natural image datasets, applying it to facial expressions presents unique challenges. Specifically, we identify two key biases to better understand these challenges: Theoretical Bias-arising from the introduction of new categories in unlabeled training data, and Practical Bias-stemming from the imbalanced and fine-grained nature of facial expression data. To address these challenges, we propose FER-GCD, an adversarial approach that integrates both implicit and explicit debiasing components. In the implicit debiasing process, we devise F-discrepancy, a novel metric used to estimate the upper bound of Theoretical Bias, helping the model minimize this upper bound through adversarial training. The explicit debiasing process further optimizes the feature generator and classifier to reduce Practical Bias. Extensive experiments on GCD-based FER datasets demonstrate that our FER-GCD framework significantly improves accuracy on both old and new categories, achieving an average improvement of 9.8% over the baseline and outperforming state-of-the-art methods.
Abstract:This paper introduces a novel approach to Generalized Category Discovery (GCD) by leveraging the concept of contextuality to enhance the identification and classification of categories in unlabeled datasets. Drawing inspiration from human cognition's ability to recognize objects within their context, we propose a dual-context based method. Our model integrates two levels of contextuality: instance-level, where nearest-neighbor contexts are utilized for contrastive learning, and cluster-level, employing prototypical contrastive learning based on category prototypes. The integration of the contextual information effectively improves the feature learning and thereby the classification accuracy of all categories, which better deals with the real-world datasets. Different from the traditional semi-supervised and novel category discovery techniques, our model focuses on a more realistic and challenging scenario where both known and novel categories are present in the unlabeled data. Extensive experimental results on several benchmark data sets demonstrate that the proposed model outperforms the state-of-the-art. Code is available at: https://github.com/Clarence-CV/Contexuality-GCD