Abstract:In this paper, we claim that vector cosine, which is generally considered among the most efficient unsupervised measures for identifying word similarity in Vector Space Models, can be outperformed by an unsupervised measure that calculates the extent of the intersection among the most mutually dependent contexts of the target words. To prove it, we describe and evaluate APSyn, a variant of the Average Precision that, without any optimization, outperforms the vector cosine and the co-occurrence on the standard ESL test set, with an improvement ranging between +9.00% and +17.98%, depending on the number of chosen top contexts.
Abstract:In this paper, we describe ROOT13, a supervised system for the classification of hypernyms, co-hyponyms and random words. The system relies on a Random Forest algorithm and 13 unsupervised corpus-based features. We evaluate it with a 10-fold cross validation on 9,600 pairs, equally distributed among the three classes and involving several Parts-Of-Speech (i.e. adjectives, nouns and verbs). When all the classes are present, ROOT13 achieves an F1 score of 88.3%, against a baseline of 57.6% (vector cosine). When the classification is binary, ROOT13 achieves the following results: hypernyms-co-hyponyms (93.4% vs. 60.2%), hypernymsrandom (92.3% vs. 65.5%) and co-hyponyms-random (97.3% vs. 81.5%). Our results are competitive with stateof-the-art models.
Abstract:ROOT9 is a supervised system for the classification of hypernyms, co-hyponyms and random words that is derived from the already introduced ROOT13 (Santus et al., 2016). It relies on a Random Forest algorithm and nine unsupervised corpus-based features. We evaluate it with a 10-fold cross validation on 9,600 pairs, equally distributed among the three classes and involving several Parts-Of-Speech (i.e. adjectives, nouns and verbs). When all the classes are present, ROOT9 achieves an F1 score of 90.7%, against a baseline of 57.2% (vector cosine). When the classification is binary, ROOT9 achieves the following results against the baseline: hypernyms-co-hyponyms 95.7% vs. 69.8%, hypernyms-random 91.8% vs. 64.1% and co-hyponyms-random 97.8% vs. 79.4%. In order to compare the performance with the state-of-the-art, we have also evaluated ROOT9 in subsets of the Weeds et al. (2014) datasets, proving that it is in fact competitive. Finally, we investigated whether the system learns the semantic relation or it simply learns the prototypical hypernyms, as claimed by Levy et al. (2015). The second possibility seems to be the most likely, even though ROOT9 can be trained on negative examples (i.e., switched hypernyms) to drastically reduce this bias.
Abstract:In this paper, we claim that Vector Cosine, which is generally considered one of the most efficient unsupervised measures for identifying word similarity in Vector Space Models, can be outperformed by a completely unsupervised measure that evaluates the extent of the intersection among the most associated contexts of two target words, weighting such intersection according to the rank of the shared contexts in the dependency ranked lists. This claim comes from the hypothesis that similar words do not simply occur in similar contexts, but they share a larger portion of their most relevant contexts compared to other related words. To prove it, we describe and evaluate APSyn, a variant of Average Precision that, independently of the adopted parameters, outperforms the Vector Cosine and the co-occurrence on the ESL and TOEFL test sets. In the best setting, APSyn reaches 0.73 accuracy on the ESL dataset and 0.70 accuracy in the TOEFL dataset, beating therefore the non-English US college applicants (whose average, as reported in the literature, is 64.50%) and several state-of-the-art approaches.