Abstract:Inferring atmospheric properties of exoplanets from observed spectra is key to understanding their formation, evolution, and habitability. Since traditional Bayesian approaches to atmospheric retrieval (e.g., nested sampling) are computationally expensive, a growing number of machine learning (ML) methods such as neural posterior estimation (NPE) have been proposed. We seek to make ML-based atmospheric retrieval (1) more reliable and accurate with verified results, and (2) more flexible with respect to the underlying neural networks and the choice of the assumed noise models. First, we adopt flow matching posterior estimation (FMPE) as a new ML approach to atmospheric retrieval. FMPE maintains many advantages of NPE, but provides greater architectural flexibility and scalability. Second, we use importance sampling (IS) to verify and correct ML results, and to compute an estimate of the Bayesian evidence. Third, we condition our ML models on the assumed noise level of a spectrum (i.e., error bars), thus making them adaptable to different noise models. Both our noise level-conditional FMPE and NPE models perform on par with nested sampling across a range of noise levels when tested on simulated data. FMPE trains about 3 times faster than NPE and yields higher IS efficiencies. IS successfully corrects inaccurate ML results, identifies model failures via low efficiencies, and provides accurate estimates of the Bayesian evidence. FMPE is a powerful alternative to NPE for fast, amortized, and parallelizable atmospheric retrieval. IS can verify results, thus helping to build confidence in ML-based approaches, while also facilitating model comparison via the evidence ratio. Noise level conditioning allows design studies for future instruments to be scaled up, for example, in terms of the range of signal-to-noise ratios.
Abstract:Atmospheric retrievals (AR) characterize exoplanets by estimating atmospheric parameters from observed light spectra, typically by framing the task as a Bayesian inference problem. However, traditional approaches such as nested sampling are computationally expensive, thus sparking an interest in solutions based on machine learning (ML). In this ongoing work, we first explore flow matching posterior estimation (FMPE) as a new ML-based method for AR and find that, in our case, it is more accurate than neural posterior estimation (NPE), but less accurate than nested sampling. We then combine both FMPE and NPE with importance sampling, in which case both methods outperform nested sampling in terms of accuracy and simulation efficiency. Going forward, our analysis suggests that simulation-based inference with likelihood-based importance sampling provides a framework for accurate and efficient AR that may become a valuable tool not only for the analysis of observational data from existing telescopes, but also for the development of new missions and instruments.
Abstract:Atmospheric retrievals (AR) of exoplanets typically rely on a combination of a Bayesian inference technique and a forward simulator to estimate atmospheric properties from an observed spectrum. A key component in simulating spectra is the pressure-temperature (PT) profile, which describes the thermal structure of the atmosphere. Current AR pipelines commonly use ad hoc fitting functions here that limit the retrieved PT profiles to simple approximations, but still use a relatively large number of parameters. In this work, we introduce a conceptually new, data-driven parameterization scheme for physically consistent PT profiles that does not require explicit assumptions about the functional form of the PT profiles and uses fewer parameters than existing methods. Our approach consists of a latent variable model (based on a neural network) that learns a distribution over functions (PT profiles). Each profile is represented by a low-dimensional vector that can be used to condition a decoder network that maps $P$ to $T$. When training and evaluating our method on two publicly available datasets of self-consistent PT profiles, we find that our method achieves, on average, better fit quality than existing baseline methods, despite using fewer parameters. In an AR based on existing literature, our model (using two parameters) produces a tighter, more accurate posterior for the PT profile than the five-parameter polynomial baseline, while also speeding up the retrieval by more than a factor of three. By providing parametric access to physically consistent PT profiles, and by reducing the number of parameters required to describe a PT profile (thereby reducing computational cost or freeing resources for additional parameters of interest), our method can help improve AR and thus our understanding of exoplanet atmospheres and their habitability.
Abstract:High-contrast imaging of exoplanets hinges on powerful post-processing methods to denoise the data and separate the signal of a companion from its host star, which is typically orders of magnitude brighter. Existing post-processing algorithms do not use all prior domain knowledge that is available about the problem. We propose a new method that builds on our understanding of the systematic noise and the causal structure of the data-generating process. Our algorithm is based on a modified version of half-sibling regression (HSR), a flexible denoising framework that combines ideas from the fields of machine learning and causality. We adapt the method to address the specific requirements of high-contrast exoplanet imaging data obtained in pupil tracking mode. The key idea is to estimate the systematic noise in a pixel by regressing the time series of this pixel onto a set of causally independent, signal-free predictor pixels. We use regularized linear models in this work; however, other (non-linear) models are also possible. In a second step, we demonstrate how the HSR framework allows us to incorporate observing conditions such as wind speed or air temperature as additional predictors. When we apply our method to four data sets from the VLT/NACO instrument, our algorithm provides a better false-positive fraction than PCA-based PSF subtraction, a popular baseline method in the field. Additionally, we find that the HSR-based method provides direct and accurate estimates for the contrast of the exoplanets without the need to insert artificial companions for calibration in the data sets. Finally, we present first evidence that using the observing conditions as additional predictors can improve the results. Our HSR-based method provides an alternative, flexible and promising approach to the challenge of modeling and subtracting the stellar PSF and systematic noise in exoplanet imaging data.
Abstract:The detection of exoplanets in high-contrast imaging (HCI) data hinges on post-processing methods to remove spurious light from the host star. So far, existing methods for this task hardly utilize any of the available domain knowledge about the problem explicitly. We propose a new approach to HCI post-processing based on a modified half-sibling regression scheme, and show how we use this framework to combine machine learning with existing scientific domain knowledge. On three real data sets, we demonstrate that the resulting system performs up to a factor of 4 times better than one of the currently leading algorithms. This has the potential to allow significant discoveries of exoplanets both in new and archival data.
Abstract:In the last few years, machine learning techniques, in particular convolutional neural networks, have been investigated as a method to replace or complement traditional matched filtering techniques that are used to detect the gravitational-wave signature of merging black holes. However, to date, these methods have not yet been successfully applied to the analysis of long stretches of data recorded by the Advanced LIGO and Virgo gravitational-wave observatories. In this work, we critically examine the use of convolutional neural networks as a tool to search for merging black holes. We identify the strengths and limitations of this approach, highlight some common pitfalls in translating between machine learning and gravitational-wave astronomy, and discuss the interdisciplinary challenges. In particular, we explain in detail why convolutional neural networks alone can not be used to claim a statistically significant gravitational-wave detection. However, we demonstrate how they can still be used to rapidly flag the times of potential signals in the data for a more detailed follow-up. Our convolutional neural network architecture as well as the proposed performance metrics are better suited for this task than a standard binary classifications scheme. A detailed evaluation of our approach on Advanced LIGO data demonstrates the potential of such systems as trigger generators. Finally, we sound a note of caution by constructing adversarial examples, which showcase interesting "failure modes" of our model, where inputs with no visible resemblance to real gravitational-wave signals are identified as such by the network with high confidence.