Abstract:An essential topic for multimodal large language models (MLLMs) is aligning vision and language concepts at a finer level. In particular, we devote efforts to encoding visual referential information for tasks such as referring and grounding. Existing methods, including proxy encoding and geometry encoding, incorporate additional syntax to encode the object's location, bringing extra burdens in training MLLMs to communicate between language and vision. This study presents ClawMachine, offering a new methodology that notates an entity directly using the visual tokens. It allows us to unify the prompt and answer of visual referential tasks without additional syntax. Upon a joint vision-language vocabulary, ClawMachine unifies visual referring and grounding into an auto-regressive format and learns with a decoder-only architecture. Experiments validate that our model achieves competitive performance across visual referring and grounding tasks with a reduced demand for training data. Additionally, ClawMachine demonstrates a native ability to integrate multi-source information for complex visual reasoning, which prior MLLMs can hardly perform without specific adaptions.
Abstract:Videos carry rich visual information including object description, action, interaction, etc., but the existing multimodal large language models (MLLMs) fell short in referential understanding scenarios such as video-based referring. In this paper, we present Artemis, an MLLM that pushes video-based referential understanding to a finer level. Given a video, Artemis receives a natural-language question with a bounding box in any video frame and describes the referred target in the entire video. The key to achieving this goal lies in extracting compact, target-specific video features, where we set a solid baseline by tracking and selecting spatiotemporal features from the video. We train Artemis on the newly established VideoRef45K dataset with 45K video-QA pairs and design a computationally efficient, three-stage training procedure. Results are promising both quantitatively and qualitatively. Additionally, we show that \model can be integrated with video grounding and text summarization tools to understand more complex scenarios. Code and data are available at https://github.com/qiujihao19/Artemis.
Abstract:In this study, we establish a baseline for a new task named multimodal multi-round referring and grounding (MRG), opening up a promising direction for instance-level multimodal dialogues. We present a new benchmark and an efficient vision-language model for this purpose. The new benchmark, named CB-300K, spans challenges including multi-round dialogue, complex spatial relationships among multiple instances, and consistent reasoning, which are beyond those shown in existing benchmarks. The proposed model, named ChatterBox, utilizes a two-branch architecture to collaboratively handle vision and language tasks. By tokenizing instance regions, the language branch acquires the ability to perceive referential information. Meanwhile, ChatterBox feeds a query embedding in the vision branch to a token receiver for visual grounding. A two-stage optimization strategy is devised, making use of both CB-300K and auxiliary external data to improve the model's stability and capacity for instance-level understanding. Experiments show that ChatterBox outperforms existing models in MRG both quantitatively and qualitatively, paving a new path towards multimodal dialogue scenarios with complicated and precise interactions. Code, data, and model are available at: https://github.com/sunsmarterjie/ChatterBox.