Abstract:Due to the recurrent structure of RNN, the long information propagation path poses limitations in capturing long-term dependencies, gradient explosion/vanishing issues, and inefficient sequential execution. Based on this, we propose a novel paradigm called Parallel Gated Network (PGN) as the new successor to RNN. PGN directly captures information from previous time steps through the designed Historical Information Extraction (HIE) layer and leverages gated mechanisms to select and fuse it with the current time step information. This reduces the information propagation path to $\mathcal{O}(1)$, effectively addressing the limitations of RNN. To enhance PGN's performance in long-range time series forecasting tasks, we propose a novel temporal modeling framework called Temporal PGN (TPGN). TPGN incorporates two branches to comprehensively capture the semantic information of time series. One branch utilizes PGN to capture long-term periodic patterns while preserving their local characteristics. The other branch employs patches to capture short-term information and aggregate the global representation of the series. TPGN achieves a theoretical complexity of $\mathcal{O}(\sqrt{L})$, ensuring efficiency in its operations. Experimental results on five benchmark datasets demonstrate the state-of-the-art (SOTA) performance and high efficiency of TPGN, further confirming the effectiveness of PGN as the new successor to RNN in long-range time series forecasting. The code is available in this repository: \url{https://github.com/Water2sea/TPGN}.
Abstract:Accurate reconstruction of plant models for phenotyping analysis is critical for optimising sustainable agricultural practices in precision agriculture. Traditional laboratory-based phenotyping, while valuable, falls short of understanding how plants grow under uncontrolled conditions. Robotic technologies offer a promising avenue for large-scale, direct phenotyping in real-world environments. This study explores the deployment of emerging robotics and digital technology in plant phenotyping to improve performance and efficiency. Three critical functional modules: environmental understanding, robotic motion planning, and in-situ phenotyping, are introduced to automate the entire process. Experimental results demonstrate the effectiveness of the system in agricultural environments. The pheno-robot system autonomously collects high-quality data by navigating around plants. In addition, the in-situ modelling model reconstructs high-quality plant models from the data collected by the robot. The developed robotic system shows high efficiency and robustness, demonstrating its potential to advance plant science in real-world agricultural environments.
Abstract:Zinc electrolysis is one of the key processes in zinc smelting, and maintaining stable operation of zinc electrolysis is an important factor in ensuring production efficiency and product quality. However, poor contact between the zinc electrolysis cathode and the anode is a common problem that leads to reduced production efficiency and damage to the electrolysis cell. Therefore, online monitoring of the contact status of the plates is crucial for ensuring production quality and efficiency. To address this issue, we propose an end-to-end network, the Frequency-masked Multimodal Autoencoder (FM-AE). This method takes the cell voltage signal and infrared image information as input, and through automatic encoding, fuses the two features together and predicts the poor contact status of the plates through a cascaded detector. Experimental results show that the proposed method maintains high accuracy (86.2%) while having good robustness and generalization ability, effectively detecting poor contact status of the zinc electrolysis cell, providing strong support for production practice.
Abstract:This paper analyzes challenges in cloze-style reading comprehension on multiparty dialogue and suggests two new tasks for more comprehensive predictions of personal entities in daily conversations. We first demonstrate that there are substantial limitations to the evaluation methods of previous work, namely that randomized assignment of samples to training and test data substantially decreases the complexity of cloze-style reading comprehension. According to our analysis, replacing the random data split with a chronological data split reduces test accuracy on previous single-variable passage completion task from 72\% to 34\%, that leaves much more room to improve. Our proposed tasks extend the previous single-variable passage completion task by replacing more character mentions with variables. Several deep learning models are developed to validate these three tasks. A thorough error analysis is provided to understand the challenges and guide the future direction of this research.