Abstract:The upcoming Square Kilometer Array (SKA) telescope marks a significant step forward in radio astronomy, presenting new opportunities and challenges for data analysis. Traditional visual models pretrained on optical photography images may not perform optimally on radio interferometry images, which have distinct visual characteristics. Self-Supervised Learning (SSL) offers a promising approach to address this issue, leveraging the abundant unlabeled data in radio astronomy to train neural networks that learn useful representations from radio images. This study explores the application of SSL to radio astronomy, comparing the performance of SSL-trained models with that of traditional models pretrained on natural images, evaluating the importance of data curation for SSL, and assessing the potential benefits of self-supervision to different domain-specific radio astronomy datasets. Our results indicate that, SSL-trained models achieve significant improvements over the baseline in several downstream tasks, especially in the linear evaluation setting; when the entire backbone is fine-tuned, the benefits of SSL are less evident but still outperform pretraining. These findings suggest that SSL can play a valuable role in efficiently enhancing the analysis of radio astronomical data. The trained models and code is available at: \url{https://github.com/dr4thmos/solo-learn-radio}
Abstract:Along with the nearing completion of the Square Kilometre Array (SKA), comes an increasing demand for accurate and reliable automated solutions to extract valuable information from the vast amount of data it will allow acquiring. Automated source finding is a particularly important task in this context, as it enables the detection and classification of astronomical objects. Deep-learning-based object detection and semantic segmentation models have proven to be suitable for this purpose. However, training such deep networks requires a high volume of labeled data, which is not trivial to obtain in the context of radio astronomy. Since data needs to be manually labeled by experts, this process is not scalable to large dataset sizes, limiting the possibilities of leveraging deep networks to address several tasks. In this work, we propose RADiff, a generative approach based on conditional diffusion models trained over an annotated radio dataset to generate synthetic images, containing radio sources of different morphologies, to augment existing datasets and reduce the problems caused by class imbalances. We also show that it is possible to generate fully-synthetic image-annotation pairs to automatically augment any annotated dataset. We evaluate the effectiveness of this approach by training a semantic segmentation model on a real dataset augmented in two ways: 1) using synthetic images obtained from real masks, and 2) generating images from synthetic semantic masks. We show an improvement in performance when applying augmentation, gaining up to 18% in performance when using real masks and 4% when augmenting with synthetic masks. Finally, we employ this model to generate large-scale radio maps with the objective of simulating Data Challenges.