Abstract:Designing high-performance optical lenses entails exploring a high-dimensional, tightly constrained space of surface curvatures, glass choices, element thicknesses, and spacings. In practice, standard optimizers (e.g., gradient-based local search and evolutionary strategies) often converge to a single local optimum, overlooking many comparably good alternatives that matter for downstream engineering decisions. We propose the Lens Descriptor-Guided Evolutionary Algorithm (LDG-EA), a two-stage framework for multimodal lens optimization. LDG-EA first partitions the design space into behavior descriptors defined by curvature-sign patterns and material indices, then learns a probabilistic model over descriptors to allocate evaluations toward promising regions. Within each descriptor, LDG-EA applies the Hill-Valley Evolutionary Algorithm with covariance-matrix self-adaptation to recover multiple distinct local minima, optionally followed by gradient-based refinement. On a 24-variable (18 continuous and 6 integer), six-element Double-Gauss topology, LDG-EA generates on average around 14500 candidate minima spanning 636 unique descriptors, an order of magnitude more than a CMA-ES baseline, while keeping wall-clock time at one hour scale. Although the best LDG-EA design is slightly worse than a fine-tuned reference lens, it remains in the same performance range. Overall, the proposed LDG-EA produces a diverse set of solutions while maintaining competitive quality within practical computational budgets and wall-clock time.




Abstract:Optimal Lens Design constitutes a fundamental, long-standing real-world optimization challenge. Potentially large number of optima, rich variety of critical points, as well as solid understanding of certain optimal designs per simple problem instances, provide altogether the motivation to address it as a niching challenge. This study applies established Niching-CMA-ES heuristic to tackle this design problem (6-dimensional Cooke triplet) in a simulation-based fashion. The outcome of employing Niching-CMA-ES `out-of-the-box' proves successful, and yet it performs best when assisted by a local searcher which accurately drives the search into optima. The obtained search-points are corroborated based upon concrete knowledge of this problem-instance, accompanied by gradient and Hessian calculations for validation. We extensively report on this computational campaign, which overall resulted in (i) the location of 19 out of 21 known minima within a single run, (ii) the discovery of 540 new optima. These are new minima similar in shape to 21 theoretical solutions, but some of them have better merit function value (unknown heretofore), (iii) the identification of numerous infeasibility pockets throughout the domain (also unknown heretofore). We conclude that niching mechanism is well-suited to address this problem domain, and hypothesize on the apparent multidimensional structures formed by the attained new solutions.