Massey University, Auckland, New Zealand
Abstract:This study investigates the application of Transfer Learning (TL) on Transformer architectures to enhance building energy consumption forecasting. Transformers are a relatively new deep learning architecture, which has served as the foundation for groundbreaking technologies such as ChatGPT. While TL has been studied in the past, these studies considered either one TL strategy or used older deep learning models such as Recurrent Neural Networks or Convolutional Neural Networks. Here, we carry out an extensive empirical study on six different TL strategies and analyse their performance under varying feature spaces. In addition to the vanilla Transformer architecture, we also experiment with Informer and PatchTST, specifically designed for time series forecasting. We use 16 datasets from the Building Data Genome Project 2 to create building energy consumption forecasting models. Experiment results reveal that while TL is generally beneficial, especially when the target domain has no data, careful selection of the exact TL strategy should be made to gain the maximum benefit. This decision largely depends on the feature space properties such as the recorded weather features. We also note that PatchTST outperforms the other two Transformer variants (vanilla Transformer and Informer). We believe our findings would assist researchers in making informed decision in using TL and transformer architectures for building energy consumption forecasting.
Abstract:This paper examines how the sequencing of images and text within multi-modal prompts influences the reasoning performance of large language models (LLMs). We performed empirical evaluations using three commercial LLMs. Our results demonstrate that the order in which modalities are presented can significantly affect performance, particularly in tasks of varying complexity. For simpler tasks involving a single image, modality sequencing had a clear impact on accuracy. However, in more complex tasks involving multiple images and intricate reasoning steps, the effect of sequencing diminished, likely due to the increased cognitive demands of the task. Our findings also highlight the importance of question/prompt structure. In nested and multi-step reasoning tasks, modality sequencing played a key role in shaping model performance. While LLMs excelled in the initial stages of reasoning, they struggled to re-incorporate earlier information, underscoring the challenges of multi-hop reasoning within transformer architectures. This suggests that aligning the sequence of modalities with the logical flow of reasoning steps is more critical than modality order alone. These insights offer valuable implications for improving multi-modal prompt design, with broader applications across fields such as education, medical imaging, and cross-modal learning.
Abstract:In this study, we explored the progression trajectories of artificial intelligence (AI) systems through the lens of complexity theory. We challenged the conventional linear and exponential projections of AI advancement toward Artificial General Intelligence (AGI) underpinned by transformer-based architectures, and posited the existence of critical points, akin to phase transitions in complex systems, where AI performance might plateau or regress into instability upon exceeding a critical complexity threshold. We employed agent-based modelling (ABM) to simulate hypothetical scenarios of AI systems' evolution under specific assumptions, using benchmark performance as a proxy for capability and complexity. Our simulations demonstrated how increasing the complexity of the AI system could exceed an upper criticality threshold, leading to unpredictable performance behaviours. Additionally, we developed a practical methodology for detecting these critical thresholds using simulation data and stochastic gradient descent to fine-tune detection thresholds. This research offers a novel perspective on AI advancement that has a particular relevance to Large Language Models (LLMs), emphasising the need for a tempered approach to extrapolating AI's growth potential and underscoring the importance of developing more robust and comprehensive AI performance benchmarks.
Abstract:This research pioneers the use of fine-tuned Large Language Models (LLMs) to automate Systematic Literature Reviews (SLRs), presenting a significant and novel contribution in integrating AI to enhance academic research methodologies. Our study employed the latest fine-tuning methodologies together with open-sourced LLMs, and demonstrated a practical and efficient approach to automating the final execution stages of an SLR process that involves knowledge synthesis. The results maintained high fidelity in factual accuracy in LLM responses, and were validated through the replication of an existing PRISMA-conforming SLR. Our research proposed solutions for mitigating LLM hallucination and proposed mechanisms for tracking LLM responses to their sources of information, thus demonstrating how this approach can meet the rigorous demands of scholarly research. The findings ultimately confirmed the potential of fine-tuned LLMs in streamlining various labor-intensive processes of conducting literature reviews. Given the potential of this approach and its applicability across all research domains, this foundational study also advocated for updating PRISMA reporting guidelines to incorporate AI-driven processes, ensuring methodological transparency and reliability in future SLRs. This study broadens the appeal of AI-enhanced tools across various academic and research fields, setting a new standard for conducting comprehensive and accurate literature reviews with more efficiency in the face of ever-increasing volumes of academic studies.
Abstract:This study investigated the integration readiness of four predominant cybersecurity Governance, Risk and Compliance (GRC) frameworks - NIST CSF 2.0, COBIT 2019, ISO 27001:2022, and the latest ISO 42001:2023 - for the opportunities, risks, and regulatory compliance when adopting Large Language Models (LLMs), using qualitative content analysis and expert validation. Our analysis, with both LLMs and human experts in the loop, uncovered potential for LLM integration together with inadequacies in LLM risk oversight of those frameworks. Comparative gap analysis has highlighted that the new ISO 42001:2023, specifically designed for Artificial Intelligence (AI) management systems, provided most comprehensive facilitation for LLM opportunities, whereas COBIT 2019 aligned most closely with the impending European Union AI Act. Nonetheless, our findings suggested that all evaluated frameworks would benefit from enhancements to more effectively and more comprehensively address the multifaceted risks associated with LLMs, indicating a critical and time-sensitive need for their continuous evolution. We propose integrating human-expert-in-the-loop validation processes as crucial for enhancing cybersecurity frameworks to support secure and compliant LLM integration, and discuss implications for the continuous evolution of cybersecurity GRC frameworks to support the secure integration of LLMs.
Abstract:The rapid rise in popularity of Large Language Models (LLMs) with emerging capabilities has spurred public curiosity to evaluate and compare different LLMs, leading many researchers to propose their LLM benchmarks. Noticing preliminary inadequacies in those benchmarks, we embarked on a study to critically assess 23 state-of-the-art LLM benchmarks, using our novel unified evaluation framework through the lenses of people, process, and technology, under the pillars of functionality and security. Our research uncovered significant limitations, including biases, difficulties in measuring genuine reasoning, adaptability, implementation inconsistencies, prompt engineering complexity, evaluator diversity, and the overlooking of cultural and ideological norms in one comprehensive assessment. Our discussions emphasized the urgent need for standardized methodologies, regulatory certainties, and ethical guidelines in light of Artificial Intelligence (AI) advancements, including advocating for an evolution from static benchmarks to dynamic behavioral profiling to accurately capture LLMs' complex behaviors and potential risks. Our study highlighted the necessity for a paradigm shift in LLM evaluation methodologies, underlining the importance of collaborative efforts for the development of universally accepted benchmarks and the enhancement of AI systems' integration into society.
Abstract:This comprehensive survey explored the evolving landscape of generative Artificial Intelligence (AI), with a specific focus on the transformative impacts of Mixture of Experts (MoE), multimodal learning, and the speculated advancements towards Artificial General Intelligence (AGI). It critically examined the current state and future trajectory of generative Artificial Intelligence (AI), exploring how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains, including an impact analysis on the generative AI research taxonomy. It assessed the computational challenges, scalability, and real-world implications of these technologies while highlighting their potential in driving significant progress in fields like healthcare, finance, and education. It also addressed the emerging academic challenges posed by the proliferation of both AI-themed and AI-generated preprints, examining their impact on the peer-review process and scholarly communication. The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare, and outlined a strategy for future AI research that focuses on a balanced and conscientious use of MoE, multimodality, and AGI in generative AI.
Abstract:Background: Accurate survival time estimates aid end-of-life medical decision-making. Objectives: Develop an interpretable survival model for elderly residential aged care residents using advanced machine learning. Setting: A major Australasian residential aged care provider. Participants: Residents aged 65+ admitted for long-term care from July 2017 to August 2023. Sample size: 11,944 residents across 40 facilities. Predictors: Factors include age, gender, health status, co-morbidities, cognitive function, mood, nutrition, mobility, smoking, sleep, skin integrity, and continence. Outcome: Probability of survival post-admission, specifically calibrated for 6-month survival estimates. Statistical Analysis: Tested CoxPH, EN, RR, Lasso, GB, XGB, and RF models in 20 experiments with a 90/10 train/test split. Evaluated accuracy using C-index, Harrell's C-index, dynamic AUROC, IBS, and calibrated ROC. Chose XGB for its performance and calibrated it for 1, 3, 6, and 12-month predictions using Platt scaling. Employed SHAP values to analyze predictor impacts. Results: GB, XGB, and RF models showed the highest C-Index values (0.714, 0.712, 0.712). The optimal XGB model demonstrated a 6-month survival prediction AUROC of 0.746 (95% CI 0.744-0.749). Key mortality predictors include age, male gender, mobility, health status, pressure ulcer risk, and appetite. Conclusions: The study successfully applies machine learning to create a survival model for aged care, aligning with clinical insights on mortality risk factors and enhancing model interpretability and clinical utility through explainable AI.
Abstract:With the proliferation of open-sourced Large Language Models (LLMs) and efficient finetuning techniques, we are on the cusp of the emergence of numerous domain-specific LLMs that have been finetuned for expertise across specialized fields and applications for which the current general-purpose LLMs are unsuitable. In academia, this technology has the potential to revolutionize the way we conduct systematic literature reviews (SLRs), access knowledge and generate new insights. This paper proposes an AI-enabled methodological framework that combines the power of LLMs with the rigorous reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). By finetuning LLMs on domain-specific academic papers that have been selected as a result of a rigorous SLR process, the proposed PRISMA-DFLLM (for Domain-specific Finetuned LLMs) reporting guidelines offer the potential to achieve greater efficiency, reusability and scalability, while also opening the potential for conducting incremental living systematic reviews with the aid of LLMs. Additionally, the proposed approach for leveraging LLMs for SLRs enables the dissemination of finetuned models, empowering researchers to accelerate advancements and democratize cutting-edge research. This paper presents the case for the feasibility of finetuned LLMs to support rigorous SLRs and the technical requirements for realizing this. This work then proposes the extended PRISMA-DFLLM checklist of reporting guidelines as well as the advantages, challenges, and potential implications of implementing PRISMA-DFLLM. Finally, a future research roadmap to develop this line of AI-enabled SLRs is presented, paving the way for a new era of evidence synthesis and knowledge discovery.
Abstract:In the last decade, the computer vision field has seen significant progress in multimodal data fusion and learning, where multiple sensors, including depth, infrared, and visual, are used to capture the environment across diverse spectral ranges. Despite these advancements, there has been no systematic and comprehensive evaluation of fusing RGB-D and thermal modalities to date. While autonomous driving using LiDAR, radar, RGB, and other sensors has garnered substantial research interest, along with the fusion of RGB and depth modalities, the integration of thermal cameras and, specifically, the fusion of RGB-D and thermal data, has received comparatively less attention. This might be partly due to the limited number of publicly available datasets for such applications. This paper provides a comprehensive review of both, state-of-the-art and traditional methods used in fusing RGB-D and thermal camera data for various applications, such as site inspection, human tracking, fault detection, and others. The reviewed literature has been categorised into technical areas, such as 3D reconstruction, segmentation, object detection, available datasets, and other related topics. Following a brief introduction and an overview of the methodology, the study delves into calibration and registration techniques, then examines thermal visualisation and 3D reconstruction, before discussing the application of classic feature-based techniques as well as modern deep learning approaches. The paper concludes with a discourse on current limitations and potential future research directions. It is hoped that this survey will serve as a valuable reference for researchers looking to familiarise themselves with the latest advancements and contribute to the RGB-DT research field.