Abstract:Multi-Agent Path Finding (MAPF) is NP-hard to solve optimally, even on graphs, suggesting no polynomial-time algorithms can compute exact optimal solutions for them. This raises a natural question: How optimal can polynomial-time algorithms reach? Whereas algorithms for computing constant-factor optimal solutions have been developed, the constant factor is generally very large, limiting their application potential. In this work, among other breakthroughs, we propose the first low-polynomial-time MAPF algorithms delivering $1$-$1.5$ (resp., $1$-$1.67$) asymptotic makespan optimality guarantees for 2D (resp., 3D) grids for random instances at a very high $1/3$ agent density, with high probability. Moreover, when regularly distributed obstacles are introduced, our methods experience no performance degradation. These methods generalize to support $100\%$ agent density. Regardless of the dimensionality and density, our high-quality methods are enabled by a unique hierarchical integration of two key building blocks. At the higher level, we apply the labeled Grid Rearrangement Algorithm (RTA), capable of performing efficient reconfiguration on grids through row/column shuffles. At the lower level, we devise novel methods that efficiently simulate row/column shuffles returned by RTA. Our implementations of RTA-based algorithms are highly effective in extensive numerical evaluations, demonstrating excellent scalability compared to other SOTA methods. For example, in 3D settings, \rta-based algorithms readily scale to grids with over $370,000$ vertices and over $120,000$ agents and consistently achieve conservative makespan optimality approaching $1.5$, as predicted by our theoretical analysis.
Abstract:Parking lots and autonomous warehouses for accommodating many vehicles/robots adopt designs in which the underlying graphs are \emph{well-connected} to simplify planning and reduce congestion. In this study, we formulate and delve into the \emph{largest well-connected set} (LWCS) problem and explore its applications in layout design for multi-robot path planning. Roughly speaking, a well-connected set over a connected graph is a set of vertices such that there is a path on the graph connecting any pair of vertices in the set without passing through any additional vertices of the set. Identifying an LWCS has many potential high-utility applications, e.g., for determining parking garage layout and capacity, as prioritized planning can be shown to be complete when start/goal configurations belong to an LWCS. In this work, we establish that computing an LWCS is NP-complete. We further develop optimal and near-optimal LWCS algorithms, with the near-optimal algorithm targeting large maps. A complete prioritized planning method is given for planning paths for multiple robots residing on an LWCS.
Abstract:Multi-Robot Path Planning (MRPP) on graphs, equivalently known as Multi-Agent Path Finding (MAPF), is a well-established NP-hard problem with critically important applications. As serial computation in (near)-optimally solving MRPP approaches the computation efficiency limit, parallelization offers a promising route to push the limit further, especially in handling hard or large MRPP instances. In this study, we initiated a \emph{targeted} parallelization effort to boost the performance of conflict-based search for MRPP. Specifically, when instances are relatively small but robots are densely packed with strong interactions, we apply a decentralized parallel algorithm that concurrently explores multiple branches that leads to markedly enhanced solution discovery. On the other hand, when instances are large with sparse robot-robot interactions, we prioritize node expansion and conflict resolution. Our innovative multi-threaded approach to parallelizing bounded-suboptimal conflict search-based algorithms demonstrates significant improvements over baseline serial methods in success rate or runtime. Our contribution further pushes the understanding of MRPP and charts a promising path for elevating solution quality and computational efficiency through parallel algorithmic strategies.
Abstract:Path planning for multiple non-holonomic robots in continuous domains constitutes a difficult robotics challenge with many applications. Despite significant recent progress on the topic, computationally efficient and high-quality solutions are lacking, especially in lifelong settings where robots must continuously take on new tasks. In this work, we make it possible to extend key ideas enabling state-of-the-art (SOTA) methods for multi-robot planning in discrete domains to the motion planning of multiple Ackerman (car-like) robots in lifelong settings, yielding high-performance centralized and decentralized planners. Our planners compute trajectories that allow the robots to reach precise $SE(2)$ goal poses. The effectiveness of our methods is thoroughly evaluated and confirmed using both simulation and real-world experiments.
Abstract:Global feature based Pedestrian Attribute Recognition (PAR) models are often poorly localized when using Grad-CAM for attribute response analysis, which has a significant impact on the interpretability, generalizability and performance. Previous researches have attempted to improve generalization and interpretation through meticulous model design, yet they often have neglected or underutilized effective prior information crucial for PAR. To this end, a novel Scale and Spatial Priors Guided Network (SSPNet) is proposed for PAR, which is mainly composed of the Adaptive Feature Scale Selection (AFSS) and Prior Location Extraction (PLE) modules. The AFSS module learns to provide reasonable scale prior information for different attribute groups, allowing the model to focus on different levels of feature maps with varying semantic granularity. The PLE module reveals potential attribute spatial prior information, which avoids unnecessary attention on irrelevant areas and lowers the risk of model over-fitting. More specifically, the scale prior in AFSS is adaptively learned from different layers of feature pyramid with maximum accuracy, while the spatial priors in PLE can be revealed from part feature with different granularity (such as image blocks, human pose keypoint and sparse sampling points). Besides, a novel IoU based attribute localization metric is proposed for Weakly-supervised Pedestrian Attribute Localization (WPAL) based on the improved Grad-CAM for attribute response mask. The experimental results on the intra-dataset and cross-dataset evaluations demonstrate the effectiveness of our proposed method in terms of mean accuracy (mA). Furthermore, it also achieves superior performance on the PCS dataset for attribute localization in terms of IoU. Code will be released at https://github.com/guotengg/SSPNet.
Abstract:At modern warehouses, mobile robots transport packages and drop them into collection bins/chutes based on shipping destinations grouped by, e.g., the ZIP code. System throughput, measured as the number of packages sorted per unit of time, determines the efficiency of the warehouse. This research develops a scalable, high-throughput multi-robot parcel sorting solution, decomposing the task into two related processes, bin assignment and offline/online multi-robot path planning, and optimizing both. Bin assignment matches collection bins with package types to minimize traveling costs. Subsequently, robots are assigned to pick up and drop packages into assigned bins. Multiple highly effective bin assignment algorithms are proposed that can work with an arbitrary planning algorithm. We propose a decentralized path planning routine using only local information to route the robots over a carefully constructed directed road network for multi-robot path planning. Our decentralized planner, provably probabilistically deadlock-free, consistently delivers near-optimal results on par with some top-performing centralized planners while significantly reducing computation times by orders of magnitude. Extensive simulations show that our overall framework delivers promising performances.
Abstract:Optimal Multi-Robot Path Planning (MRPP) has garnered significant attention due to its many applications in domains including warehouse automation, transportation, and swarm robotics. Current MRPP solvers can be divided into reduction-based, search-based, and rule-based categories, each with their strengths and limitations. Regardless of the methodology, however, the issue of handling dense MRPP instances remains a significant challenge, where existing approaches generally demonstrate a dichotomy regarding solution optimality and efficiency. This study seeks to bridge the gap in optimal MRPP resolution for dense, highly-entangled scenarios, with potential applications to high-density storage systems and traffic congestion control. Toward that goal, we analyze the behaviors of SOTA MRPP algorithms in dense settings and develop two hybrid algorithms leveraging the strengths of existing SOTA algorithms: DCBS (database-accelerated enhanced conflict-based search) and SCBS (sparsified enhanced conflict-based search). Experimental validations demonstrate that DCBS and SCBS deliver a significant reduction in computational time compared to existing bounded-suboptimal methods and improve solution quality compared to existing rule-based methods, achieving a desirable balance between computational efficiency and solution optimality. As a result, DCBS and SCBS are particularly suitable for quickly computing good-quality solutions for multi-robot routing in dense settings
Abstract:We study the problem of allocating many mobile robots for the execution of a pre-defined sweep schedule in a known two-dimensional environment, with applications toward search and rescue, coverage, surveillance, monitoring, pursuit-evasion, and so on. The mobile robots (or agents) are assumed to have one-dimensional sensing capability with probabilistic guarantees that deteriorate as the sensing distance increases. In solving such tasks, a time-parameterized distribution of robots along the sweep frontier must be computed, with the objective to minimize the number of robots used to achieve some desired coverage quality guarantee or to maximize the probabilistic guarantee for a given number of robots. We propose a max-flow based algorithm for solving the allocation task, which builds on a decomposition technique of the workspace as a generalization of the well-known boustrophedon decomposition. Our proposed algorithm has a very low polynomial running time and completes in under two seconds for polygonal environments with over $10^5$ vertices. Simulation experiments are carried out on three realistic use cases with randomly generated obstacles of varying shapes, sizes, and spatial distributions, which demonstrate the applicability and scalability our proposed method.
Abstract:Parking in large metropolitan areas is often a time-consuming task with further implications toward traffic patterns that affect urban landscaping. Reducing the premium space needed for parking has led to the development of automated mechanical parking systems. Compared to regular garages having one or two rows of vehicles in each island, automated garages can have multiple rows of vehicles stacked together to support higher parking demands. Although this multi-row layout reduces parking space, it makes the parking and retrieval more complicated. In this work, we propose an automated garage design that supports near 100% parking density. Modeling the problem of parking and retrieving multiple vehicles as a special class of multi-robot path planning problem, we propose associated algorithms for handling all common operations of the automated garage, including (1) optimal algorithm and near-optimal methods that find feasible and efficient solutions for simultaneous parking/retrieval and (2) a novel shuffling mechanism to rearrange vehicles to facilitate scheduled retrieval at rush hours. We conduct thorough simulation studies showing the proposed methods are promising for large and high-density real-world parking applications.
Abstract:POI-level geo-information of social posts is critical to many location-based applications and services. However, the multi-modality, complexity and diverse nature of social media data and their platforms limit the performance of inferring such fine-grained locations and their subsequent applications. To address this issue, we present a transformer-based general framework, which builds upon pre-trained language models and considers non-textual data, for social post geolocation at the POI level. To this end, inputs are categorized to handle different social data, and an optimal combination strategy is provided for feature representations. Moreover, a uniform representation of hierarchy is proposed to learn temporal information, and a concatenated version of encodings is employed to capture feature-wise positions better. Experimental results on various social datasets demonstrate that three variants of our proposed framework outperform multiple state-of-art baselines by a large margin in terms of accuracy and distance error metrics.