Parking in large metropolitan areas is often a time-consuming task with further implications toward traffic patterns that affect urban landscaping. Reducing the premium space needed for parking has led to the development of automated mechanical parking systems. Compared to regular garages having one or two rows of vehicles in each island, automated garages can have multiple rows of vehicles stacked together to support higher parking demands. Although this multi-row layout reduces parking space, it makes the parking and retrieval more complicated. In this work, we propose an automated garage design that supports near 100% parking density. Modeling the problem of parking and retrieving multiple vehicles as a special class of multi-robot path planning problem, we propose associated algorithms for handling all common operations of the automated garage, including (1) optimal algorithm and near-optimal methods that find feasible and efficient solutions for simultaneous parking/retrieval and (2) a novel shuffling mechanism to rearrange vehicles to facilitate scheduled retrieval at rush hours. We conduct thorough simulation studies showing the proposed methods are promising for large and high-density real-world parking applications.