Abstract:The exploration of Graph Neural Networks (GNNs) for processing graph-structured data has expanded, particularly their potential for causal analysis due to their universal approximation capabilities. Anticipated to significantly enhance common graph-based tasks such as classification and prediction, the development of a causally enhanced GNN framework is yet to be thoroughly investigated. Addressing this shortfall, our study delves into nine benchmark graph classification models, testing their strength and versatility across seven datasets spanning three varied domains to discern the impact of causality on the predictive prowess of GNNs. This research offers a detailed assessment of these models, shedding light on their efficiency, and flexibility in different data environments, and highlighting areas needing advancement. Our findings are instrumental in furthering the understanding and practical application of GNNs in diverse datacentric fields
Abstract:In machine learning, exploring data correlations to predict outcomes is a fundamental task. Recognizing causal relationships embedded within data is pivotal for a comprehensive understanding of system dynamics, the significance of which is paramount in data-driven decision-making processes. Beyond traditional methods, there has been a surge in the use of graph neural networks (GNNs) for causal learning, given their capabilities as universal data approximators. Thus, a thorough review of the advancements in causal learning using GNNs is both relevant and timely. To structure this review, we introduce a novel taxonomy that encompasses various state-of-the-art GNN methods employed in studying causality. GNNs are further categorized based on their applications in the causality domain. We further provide an exhaustive compilation of datasets integral to causal learning with GNNs to serve as a resource for practical study. This review also touches upon the application of causal learning across diverse sectors. We conclude the review with insights into potential challenges and promising avenues for future exploration in this rapidly evolving field of machine learning.
Abstract:Machine Unlearning is an emerging field that addresses data privacy issues by enabling the removal of private or irrelevant data from the Machine Learning process. Challenges related to privacy and model efficiency arise from the use of outdated, private, and irrelevant data. These issues compromise both the accuracy and the computational efficiency of models in both Machine Learning and Unlearning. To mitigate these challenges, we introduce a novel framework, Attention-based Machine Unlearning using Federated Reinforcement Learning (FRAMU). This framework incorporates adaptive learning mechanisms, privacy preservation techniques, and optimization strategies, making it a well-rounded solution for handling various data sources, either single-modality or multi-modality, while maintaining accuracy and privacy. FRAMU's strength lies in its adaptability to fluctuating data landscapes, its ability to unlearn outdated, private, or irrelevant data, and its support for continual model evolution without compromising privacy. Our experiments, conducted on both single-modality and multi-modality datasets, revealed that FRAMU significantly outperformed baseline models. Additional assessments of convergence behavior and optimization strategies further validate the framework's utility in federated learning applications. Overall, FRAMU advances Machine Unlearning by offering a robust, privacy-preserving solution that optimizes model performance while also addressing key challenges in dynamic data environments.