Abstract:Large language models (LLMs) are vulnerable to universal jailbreaks-prompting strategies that systematically bypass model safeguards and enable users to carry out harmful processes that require many model interactions, like manufacturing illegal substances at scale. To defend against these attacks, we introduce Constitutional Classifiers: safeguards trained on synthetic data, generated by prompting LLMs with natural language rules (i.e., a constitution) specifying permitted and restricted content. In over 3,000 estimated hours of red teaming, no red teamer found a universal jailbreak that could extract information from an early classifier-guarded LLM at a similar level of detail to an unguarded model across most target queries. On automated evaluations, enhanced classifiers demonstrated robust defense against held-out domain-specific jailbreaks. These classifiers also maintain deployment viability, with an absolute 0.38% increase in production-traffic refusals and a 23.7% inference overhead. Our work demonstrates that defending against universal jailbreaks while maintaining practical deployment viability is tractable.
Abstract:Anthropogenic activities pose threats to wildlife and marine fauna, prompting the need for efficient animal counting methods. This research study utilizes deep learning techniques to automate counting tasks. Inspired by previous studies on crowd and animal counting, a UNet model with various backbones is implemented, which uses Gaussian density maps for training, bypassing the need of training a detector. The new model is applied to the task of counting dolphins and elephants in aerial images. Quantitative evaluation shows promising results, with the EfficientNet-B5 backbone achieving the best performance for African elephants and the ResNet18 backbone for dolphins. The model accurately locates animals despite complex image background conditions. By leveraging artificial intelligence, this research contributes to wildlife conservation efforts and enhances coexistence between humans and wildlife through efficient object counting without detection from aerial remote sensing.