Abstract:jinns is an open-source Python library for physics-informed neural networks, built to tackle both forward and inverse problems, as well as meta-model learning. Rooted in the JAX ecosystem, it provides a versatile framework for efficiently prototyping real-problems, while easily allowing extensions to specific needs. Furthermore, the implementation leverages existing popular JAX libraries such as equinox and optax for model definition and optimisation, bringing a sense of familiarity to the user. Many models are available as baselines, and the documentation provides reference implementations of different use-cases along with step-by-step tutorials for extensions to specific needs. The code is available on Gitlab https://gitlab.com/mia_jinns/jinns.
Abstract:Mathematical modeling in systems toxicology enables a comprehensive understanding of the effects of pharmaceutical substances on cardiac health. However, the complexity of these models limits their widespread application in early drug discovery. In this paper, we introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks (SBINNs). The proposed method, HyperSBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials, outperforming traditional differential equation solvers in speed. Our model efficiently handles scenarios with limited data and complex parameterized differential equations. The HyperSBINN model demonstrates robust performance in predicting APD90 values, indicating its potential as a reliable tool for modeling cardiac electrophysiology and aiding in preclinical drug development. This framework represents an advancement in computational modeling, offering a scalable and efficient solution for simulating and understanding complex biological systems.
Abstract:This paper studies a reconstruction-based approach for weakly-supervised animal detection from aerial images in marine environments. Such an approach leverages an anomaly detection framework that computes metrics directly on the input space, enhancing interpretability and anomaly localization compared to feature embedding methods. Building upon the success of Vector-Quantized Variational Autoencoders in anomaly detection on computer vision datasets, we adapt them to the marine animal detection domain and address the challenge of handling noisy data. To evaluate our approach, we compare it with existing methods in the context of marine animal detection from aerial image data. Experiments conducted on two dedicated datasets demonstrate the superior performance of the proposed method over recent studies in the literature. Our framework offers improved interpretability and localization of anomalies, providing valuable insights for monitoring marine ecosystems and mitigating the impact of human activities on marine animals.
Abstract:Anthropogenic activities pose threats to wildlife and marine fauna, prompting the need for efficient animal counting methods. This research study utilizes deep learning techniques to automate counting tasks. Inspired by previous studies on crowd and animal counting, a UNet model with various backbones is implemented, which uses Gaussian density maps for training, bypassing the need of training a detector. The new model is applied to the task of counting dolphins and elephants in aerial images. Quantitative evaluation shows promising results, with the EfficientNet-B5 backbone achieving the best performance for African elephants and the ResNet18 backbone for dolphins. The model accurately locates animals despite complex image background conditions. By leveraging artificial intelligence, this research contributes to wildlife conservation efforts and enhances coexistence between humans and wildlife through efficient object counting without detection from aerial remote sensing.