UBS
Abstract:Mathematical modeling in systems toxicology enables a comprehensive understanding of the effects of pharmaceutical substances on cardiac health. However, the complexity of these models limits their widespread application in early drug discovery. In this paper, we introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks (SBINNs). The proposed method, HyperSBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials, outperforming traditional differential equation solvers in speed. Our model efficiently handles scenarios with limited data and complex parameterized differential equations. The HyperSBINN model demonstrates robust performance in predicting APD90 values, indicating its potential as a reliable tool for modeling cardiac electrophysiology and aiding in preclinical drug development. This framework represents an advancement in computational modeling, offering a scalable and efficient solution for simulating and understanding complex biological systems.
Abstract:This article addresses online variational estimation in state-space models. We focus on learning the smoothing distribution, i.e. the joint distribution of the latent states given the observations, using a variational approach together with Monte Carlo importance sampling. We propose an efficient algorithm for computing the gradient of the evidence lower bound (ELBO) in the context of streaming data, where observations arrive sequentially. Our contributions include a computationally efficient online ELBO estimator, demonstrated performance in offline and true online settings, and adaptability for computing general expectations under joint smoothing distributions.
Abstract:We propose an innovative and generic methodology to analyse individual and collective behaviour through individual trajectory data. The work is motivated by the analysis of GPS trajectories of fishing vessels collected from regulatory tracking data in the context of marine biodiversity conservation and ecosystem-based fisheries management. We build a low-dimensional latent representation of trajectories using convolutional neural networks as non-linear mapping. This is done by training a conditional variational auto-encoder taking into account covariates. The posterior distributions of the latent representations can be linked to the characteristics of the actual trajectories. The latent distributions of the trajectories are compared with the Bhattacharyya coefficient, which is well-suited for comparing distributions. Using this coefficient, we analyse the variation of the individual behaviour of each vessel during time. For collective behaviour analysis, we build proximity graphs and use an extension of the stochastic block model for multiple networks. This model results in a clustering of the individuals based on their set of trajectories. The application to French fishing vessels enables us to obtain groups of vessels whose individual and collective behaviours exhibit spatio-temporal patterns over the period 2014-2018.
Abstract:We consider the problem of state estimation in general state-space models using variational inference. For a generic variational family defined using the same backward decomposition as the actual joint smoothing distribution, we establish for the first time that, under mixing assumptions, the variational approximation of expectations of additive state functionals induces an error which grows at most linearly in the number of observations. This guarantee is consistent with the known upper bounds for the approximation of smoothing distributions using standard Monte Carlo methods. Moreover, we propose an amortized inference framework where a neural network shared over all times steps outputs the parameters of the variational kernels. We also study empirically parametrizations which allow analytical marginalization of the variational distributions, and therefore lead to efficient smoothing algorithms. Significant improvements are made over state-of-the art variational solutions, especially when the generative model depends on a strongly nonlinear and noninjective mixing function.