Abstract:A site's recommendation system relies on knowledge of its users' preferences to offer relevant recommendations to them. These preferences are for attributes that comprise items and content shown on the site, and are estimated from the data of users' interactions with the site. Another form of users' preferences is material too, namely, users' preferences for the site over other sites, since that shows users' base level propensities to engage with the site. Estimating users' preferences for the site, however, faces major obstacles because (a) the focal site usually has no data of its users' interactions with other sites; these interactions are users' unobserved behaviors for the focal site; and (b) the Machine Learning literature in recommendation does not offer a model of this situation. Even if (b) is resolved, the problem in (a) persists since without access to data of its users' interactions with other sites, there is no ground truth for evaluation. Moreover, it is most useful when (c) users' preferences for the site can be estimated at the individual level, since the site can then personalize recommendations to individual users. We offer a method to estimate individual user's preference for a focal site, under this premise. In particular, we compute the focal site's share of a user's online engagements without any data from other sites. We show an evaluation framework for the model using only the focal site's data, allowing the site to test the model. We rely upon a Hierarchical Bayes Method and perform estimation in two different ways - Markov Chain Monte Carlo and Stochastic Gradient with Langevin Dynamics. Our results find good support for the approach to computing personalized share of engagement and for its evaluation.
Abstract:Hierarchical Topic Models (HTMs) are useful for discovering topic hierarchies in a collection of documents. However, traditional HTMs often produce hierarchies where lowerlevel topics are unrelated and not specific enough to their higher-level topics. Additionally, these methods can be computationally expensive. We present HyHTM - a Hyperbolic geometry based Hierarchical Topic Models - that addresses these limitations by incorporating hierarchical information from hyperbolic geometry to explicitly model hierarchies in topic models. Experimental results with four baselines show that HyHTM can better attend to parent-child relationships among topics. HyHTM produces coherent topic hierarchies that specialise in granularity from generic higher-level topics to specific lowerlevel topics. Further, our model is significantly faster and leaves a much smaller memory footprint than our best-performing baseline.We have made the source code for our algorithm publicly accessible.