Abstract:In this paper, we propose a distributed multi-stage optimization method for planning complex missions for heterogeneous multi-robot teams. This class of problems involves tasks that can be executed in different ways and are associated with cross-schedule dependencies that constrain the schedules of the different robots in the system. The proposed approach involves a multi-objective heuristic search of the mission, represented as a hierarchical tree that defines the mission goal. This procedure outputs several favorable ways to fulfill the mission, which directly feed into the next stage of the method. We propose a distributed metaheuristic based on evolutionary computation to allocate tasks and generate schedules for the set of chosen decompositions. The method is evaluated in a simulation setup of an automated greenhouse use case, where we demonstrate the method's ability to adapt the planning strategy depending on the available robots and the given optimization criteria.
Abstract:To enable safe and efficient use of multi-robot systems in everyday life, a robust and fast method for coordinating their actions must be developed. In this paper, we present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints. The approach is based on representing the problem as a variant of the vehicle routing problem, and the solution is found using a distributed metaheuristic algorithm based on evolutionary computation (CBM-pop). Such an approach allows a fast and near-optimal allocation and can therefore be used for online replanning in case of task changes. Simulation results show that the approach has better computational speed and scalability without loss of optimality compared to the state-of-the-art distributed methods. An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
Abstract:Notwithstanding the growing presence of AGVs in the industry, there is a lack of research about multi-wheeled AGVs which offer higher maneuverability and space efficiency. In this paper, we present generalized path continuity conditions as a continuation of previous research done for vehicles with more constrained kinematic capabilities. We propose a novel approach for analytically defining various kinematic modes (motion modes), that AGVs with multiple steer and drive wheels can utilize. This approach enables deriving vehicle kinematic equations based on the vehicle configuration and its constraints, path shape, and corresponding motion mode. Finally, we derive general continuity conditions for paths that multi-wheeled AGVs can follow, and show through examples how they can be utilized in layout design methods.
Abstract:In this paper we propose a planner for 3D exploration that is suitable for applications using state-of-the-art 3D sensors such as lidars, which produce large point clouds with each scan. The planner is based on the detection of a frontier - a boundary between the explored and unknown part of the environment - and consists of the algorithm for detecting frontier points, followed by clustering of frontier points and selecting the best frontier point to be explored. Compared to existing frontier-based approaches, the planner is more scalable, i.e. it requires less time for the same data set size while ensuring similar exploration time. Performance is achieved by not relying on data obtained directly from the 3D sensor, but on data obtained by a mapping algorithm. In order to cluster the frontier points, we use the properties of the Octree environment representation, which allows easy analysis with different resolutions. The planner is tested in the simulation environment and in an outdoor test area with a UAV equipped with a lidar sensor. The results show the advantages of the approach.